Patents by Inventor Kenji Gomikawa

Kenji Gomikawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9190157
    Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: November 17, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mitsuhiro Noguchi, Kenji Gomikawa
  • Publication number: 20140334234
    Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mitsuhiro NOGUCHI, Kenji GOMIKAWA
  • Patent number: 8829582
    Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: September 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiro Noguchi, Kenji Gomikawa
  • Patent number: 8625349
    Abstract: A memory includes a first word line which is connected to a control gate electrode of a first memory cell, a second word line which is connected to a control gate electrode of a second memory cell, a potential transfer line which is connected to both of the first and second word lines, a first N-channel MOS transistor which is connected between the first word line and the potential transfer line, and a second N-channel MOS transistor which is connected between the second word line and the potential transfer line. A control circuit supplies a first potential with a plus value to a semiconductor substrate, and supplies a second potential with the plus value lower than the first potential to the potential transfer line, to turn the first N-channel MOS transistor on, and to turn the second N-channel MOS transistor off, in erasing data of the first memory cell.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: January 7, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Kutsukake, Kenji Gomikawa, Mitsuhiro Noguchi, Kikuko Sugimae, Masato Endo, Takuya Futatsuyama, Koji Kato, Kanae Uchida
  • Patent number: 8399953
    Abstract: A semiconductor device includes a semiconductor substrate, an element isolation insulating film dividing an upper portion of the substrate into a plurality of first active regions, a source layer and a drain layer, a gate electrode, a gate insulating film, a first punch-through stopper layer, and a second punch-through stopper layer. The source layer and the drain layer are formed in spaced to each other in an upper portion of each of the first active regions. The first punch-through stopper layer is formed in a region of the first active region directly below the source layer and the second punch-through stopper layer is formed in a region of the first active region directly below the drain layer. The first punch-through stopper layer and the second punch-through stopper layer each has an effective impurity concentration higher than the semiconductor substrate. The first punch-through stopper layer and the source layer are separated in the channel region.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: March 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Kutsukake, Kenji Gomikawa, Yoshiko Kato, Norihisa Arai, Tomoaki Hatano
  • Patent number: 8319316
    Abstract: A semiconductor memory device includes a first transistor. The first transistor includes a gate electrode, a channel region, a source region, a source region, an overlapping region, a contact region, and an impurity diffusion region. The channel region has a first impurity concentration. The source and drain regions have a second impurity concentration. The overlapping region is formed in the semiconductor layer where the channel region overlaps the source region and the drain region, and has a third impurity concentration. The contact region has a fourth impurity concentration. The impurity diffusion region has a fifth impurity concentration higher than the second impurity concentration and lower than the fourth impurity concentration. The impurity diffusion region is in contact with the contact region and away from the overlapping region and positioned at least in a region between the contact region and the overlapping region.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: November 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Kutsukake, Kenji Gomikawa, Yoshiko Kato, Mitsuhiro Noguchi, Masato Endo
  • Patent number: 8294238
    Abstract: A peripheral circuit area is formed around a memory cell array area. The peripheral circuit area has element regions, an element isolation region isolating the element regions, and field-effect transistor formed in each of the element regions and including a gate electrode extending in a channel width direction, on a semiconductor substrate. An end portion and a corner portion of the gate electrode are on the element isolation region. A radius of curvature of the corner portion of the gate electrode is smaller than a length from the end portion of the element region in the channel width direction to the end portion of the gate electrode in the channel width direction, and is less than 85 nm.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: October 23, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Kutsukake, Takayuki Toba, Yoshiko Kato, Kenji Gomikawa, Haruhiko Koyama
  • Publication number: 20120037973
    Abstract: A memory cell includes a floating gate electrode, a first inter-electrode insulating film and a control gate electrode. A peripheral transistor includes a lower electrode, a second inter-electrode insulating film and an upper electrode. The lower electrode and the upper electrode are electrically connected via an opening provided on the second inter-electrode insulating film. The first and second inter-electrode insulating films include a high-permittivity material, the first inter-electrode insulating film has a first structure, and the second inter-electrode insulating film has a second structure different from the first structure.
    Type: Application
    Filed: October 25, 2011
    Publication date: February 16, 2012
    Inventors: Kenji GOMIKAWA, Tadashi Iguchi, Mitsuhiro Noguchi, Shoichi Watanabe
  • Publication number: 20120012909
    Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 19, 2012
    Inventors: Mitsuhiro Noguchi, Kenji Gomikawa
  • Patent number: 8093664
    Abstract: A peripheral circuit includes at least a first transistor. The first transistor comprises a gate electrode formed on a surface of a semiconductor layer via a gate insulating film. A channel region of a first conductivity type having a first impurity concentration is formed on a surface of the semiconductor layer directly below and in the vicinity of the gate electrode. A source-drain diffusion region of the first conductivity type is formed on the surface of the semiconductor layer to sandwich the gate electrode and has a second impurity concentration greater than the first impurity concentration. An overlapping region of the first conductivity type is formed on the surface of the semiconductor layer directly below the gate electrode where the channel region and the source-drain diffusion region overlap. The overlapping region has a third impurity concentration greater than the second impurity concentration.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: January 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Gomikawa, Mitsuhiro Noguchi
  • Publication number: 20110300680
    Abstract: A peripheral circuit includes at least a first transistor. The first transistor comprises a gate electrode formed on a surface of a semiconductor layer via agate insulating film. A channel region of a first conductivity type having a first impurity concentration is formed on a surface of the semiconductor layer directly below and in the vicinity of the gate electrode. A source-drain diffusion region of the first conductivity type is formed on the surface of the semiconductor layer to sandwich the gate electrode and has a second impurity concentration greater than the first impurity concentration. An overlapping region of the first conductivity type is formed on the surface of the semiconductor layer directly below the gate electrode where the channel region and the source-drain diffusion region overlap. The overlapping region has a third impurity concentration greater than the second impurity concentration.
    Type: Application
    Filed: August 17, 2011
    Publication date: December 8, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kenji Gomikawa, Mitsuhiro Noguchi
  • Patent number: 8072021
    Abstract: A memory cell includes a floating gate electrode, a first inter-electrode insulating film and a control gate electrode. A peripheral transistor includes a lower electrode, a second inter-electrode insulating film and an upper electrode. The lower electrode and the upper electrode are electrically connected via an opening provided on the second inter-electrode insulating film. The first and second inter-electrode insulating films include a high-permittivity material, the first inter-electrode insulating film has a first structure, and the second inter-electrode insulating film has a second structure different from the first structure.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Gomikawa, Tadashi Iguchi, Mitsuhiro Noguchi, Shoichi Watanabe
  • Patent number: 8072020
    Abstract: A first select transistor is connected to one end of a plurality of memory cell transistors that are serially connected. A second select transistor is connected to the other end of the serially connected memory cell transistors. A first impurity diffusion region is formed in a semiconductor substrate and constitutes a first main electrode of the first select transistor. A second impurity diffusion region is formed in the semiconductor substrate and constitutes a second main electrode of the second select transistor. A depth of the first impurity diffusion region is greater than a depth of the second impurity diffusion region.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: December 6, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Gomikawa, Hiroyuki Kutsukake, Yoshiko Kato, Mitsuhiro Noguchi
  • Patent number: 8049259
    Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: November 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiro Noguchi, Kenji Gomikawa
  • Publication number: 20110220996
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate, an element isolation insulating film, a source layer, a drain layer, a gate electrode, a gate insulating film, a first punch-through stopper layer, and a second punch-through stopper layer. The semiconductor substrate is a first conductivity type. The element isolation insulating film divides an upper layer portion of the semiconductor substrate into a plurality of first active regions. The source layer and the drain layer are a second conductivity type and are formed in spaced to each other in an upper portion of each of the first active regions. The gate electrode is provided in a region directly above a channel region on the semiconductor substrate located between the source layer and the drain layer. The gate insulating film is provided between the semiconductor substrate and the gate electrode.
    Type: Application
    Filed: September 17, 2010
    Publication date: September 15, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki KUTSUKAKE, Kenji Gomikawa, Yoshiko Kato, Norihisa Arai, Tomoaki Hatano
  • Publication number: 20110079835
    Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
    Type: Application
    Filed: December 13, 2010
    Publication date: April 7, 2011
    Inventors: Mitsuhiro Noguchi, Kenji Gomikawa
  • Patent number: RE45307
    Abstract: A non-volatile semiconductor storage device includes: a memory cell array having memory cells arranged therein, the memory cells storing data in a non-volatile manner; and a plurality of transfer transistors transferring a voltage to the memory cells, the voltage to be supplied for data read, write and erase operations with respect to the memory cells. Each of the transfer transistors includes: a gate electrode formed on a semiconductor substrate via a gate insulation film; and diffusion layers formed to sandwich the gate electrode therebetween and functioning as drain/source layers. Upper layer wirings are provided above the diffusion layers and provided with a predetermined voltage to prevent depletion of the diffusion layers at least when the transfer transistors become conductive.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: December 30, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Dai Nakamura, Hiroyuki Kutsukake, Kenji Gomikawa, Takeshi Shimane, Mitsuhiro Noguchi, Koji Hosono, Masaru Koyanagi, Takashi Aoi
  • Patent number: RE46526
    Abstract: A non-volatile semiconductor storage device includes: a memory cell array having memory cells arranged therein, the memory cells storing data in a non-volatile manner; and a plurality of transfer transistors transferring a voltage to the memory cells, the voltage to be supplied for data read, write and erase operations with respect to the memory cells. Each of the transfer transistors includes: a gate electrode formed on a semiconductor substrate via a gate insulation film; and diffusion layers formed to sandwich the gate electrode therebetween and functioning as drain/source layers. Upper layer wirings are provided above the diffusion layers and provided with a predetermined voltage to prevent depletion of the diffusion layers at least when the transfer transistors become conductive.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: August 29, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Dai Nakamura, Hiroyuki Kutsukake, Kenji Gomikawa, Takeshi Shimane, Mitsuhiro Noguchi, Koji Hosono, Masaru Koyanagi, Takashi Aoi
  • Patent number: RE47355
    Abstract: A non-volatile semiconductor storage device includes: a memory cell array having memory cells arranged therein, the memory cells storing data in a non-volatile manner; and a plurality of transfer transistors transferring a voltage to the memory cells, the voltage to be supplied for data read, write and erase operations with respect to the memory cells. Each of the transfer transistors includes: a gate electrode formed on a semiconductor substrate via a gate insulation film; and diffusion layers formed to sandwich the gate electrode therebetween and functioning as drain/source layers. Upper layer wirings are provided above the diffusion layers and provided with a predetermined voltage to prevent depletion of the diffusion layers at least when the transfer transistors become conductive.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: April 16, 2019
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Dai Nakamura, Hiroyuki Kutsukake, Kenji Gomikawa, Takeshi Shimane, Mitsuhiro Noguchi, Koji Hosono, Masaru Koyanagi, Takashi Aoi
  • Patent number: RE49274
    Abstract: A non-volatile semiconductor storage device includes: a memory cell array having memory cells arranged therein, the memory cells storing data in a non-volatile manner; and a plurality of transfer transistors transferring a voltage to the memory cells, the voltage to be supplied for data read, write and erase operations with respect to the memory cells. Each of the transfer transistors includes: a gate electrode formed on a semiconductor substrate via a gate insulation film; and diffusion layers formed to sandwich the gate electrode therebetween and functioning as drain/source layers. Upper layer wirings are provided above the diffusion layers and provided with a predetermined voltage to prevent depletion of the diffusion layers at least when the transfer transistors become conductive.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: November 1, 2022
    Assignee: KIOXIA CORPORATION
    Inventors: Dai Nakamura, Hiroyuki Kutsukake, Kenji Gomikawa, Takeshi Shimane, Mitsuhiro Noguchi, Koji Hosono, Masaru Koyanagi, Takashi Aoi