Patents by Inventor Kenji Nishi

Kenji Nishi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200372427
    Abstract: A transport task allocation method includes provisionally allocating a transport task to a set of traveling carriages, determining travel schedules of the traveling carriages, computing a task evaluation value with respect to the transport task allocated to the traveling carriage that travels according to the travel schedule and an overall allocations evaluation value with respect to overall allocations, changing the currently allocated traveling carriage for at least one transport task based on the task evaluation value, and determining overall allocations corresponding to a best overall allocations evaluation value that satisfies a predetermined condition.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Inventors: Tatsushi Nishi, Kosei Nishida, Hideki Kaname, Kenji Kumagai, Toshimitsu Higashi
  • Publication number: 20200372797
    Abstract: A time-space network including a set of state nodes and a set of state transition edges each of which connects between the state nodes, is generated. Each of the state nodes represents a state in which a vehicle is present at a certain point node at a certain time. State transition costs increasing according to a difference of time corresponding to before or after transition and arrival time are defined. In the time-space network, by using the Dijkstra algorithm, a minimum cost transition path in which a sum of the state transition costs is minimum among paths from a starting point state node to any of the state nodes indicating that the vehicle is present at an arrival point is obtained. The starting point state node represents a state that the vehicle is present at a departure point at a reference time. The route and the timing of the vehicle are determined based on the minimum cost transition path.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Inventors: Tatsushi NISHI, Kosei NISHIDA, Hideki KANAME, Kenji KUMAGAI, Toshimitsu HIGASHI
  • Publication number: 20200348007
    Abstract: A light emitting device includes a light emitting element, a light-transmissive member, a covering member, and a base member. The light-transmissive member has a flange on a lateral surface thereof in such a manner as to continue from a periphery of an upper surface to a periphery of a lower surface of the light-transmissive member and to be positioned outside the upper surface of the light-transmissive member and an upper surface of the light emitting element in plan view. The flange has a thin portion at an inner side than the outer edge side of the flange. The thin portion has a thickness smaller than a thickness of the outer edge side of the flange.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Applicant: NICHIA CORPORATION
    Inventors: Kenji OZEKI, Masami NISHI
  • Patent number: 10753576
    Abstract: A light emitting device includes a light emitting element, a light-transmissive member, a covering member, and a base member. The light-transmissive member has a flange on a lateral surface thereof in such a manner as to continue from a periphery of an upper surface to a periphery of a lower surface of the light-transmissive member and to be positioned outside the upper surface of the light-transmissive member and an upper surface of the light emitting element in plan view. The flange has a thin portion at an inner side than the outer edge side of the flange. The thin portion has a thickness smaller than a thickness of the outer edge side of the flange.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: August 25, 2020
    Assignee: NICHIA CORPORATION
    Inventors: Kenji Ozeki, Masami Nishi
  • Patent number: 10725108
    Abstract: [Summary] [Objective] Estimation accuracy in a battery status estimating device which estimates a charge status of a secondary battery should be improved further more. [Means for Solution] In an SOC estimation by integration of a charge-and-discharge current, influence of a sensor error cannot be disregarded, and the influence of such an error is accumulated as time passes. On the other hand, in an SOC estimation based on measured values of a battery voltage and a battery temperature, estimation accuracy largely depends on a load-generation pattern. Then, in accordance with the present invention, by mixing both, while one of them is reset based on a reliability in accordance with an operation situation and/or an input current value which will be the premise for an SOC estimate calculation in a battery model is set up based on the reliability, it becomes possible to compute an SOC estimate in high accuracy as much as possible in accordance with the operation situation.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: July 28, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenji Takahashi, Yuji Nishi, Nobuyasu Haga
  • Patent number: 10723374
    Abstract: A first ground apparatus performs polling communication with a train using a first train list. A second ground apparatus performs polling communication with a train using a second train list. Each ground apparatus respectively acquires train location information from the trains to be managed. The first ground apparatus notifies the second ground apparatus of a going-out notification of a boundary passing train that goes out from a first radio communication control region and comes in a second radio communication control region, and, in the case where the boundary passing train goes out from the first radio communication control region, deletes train identification information of the boundary passing train from the first train list. The second ground apparatus adds the train identification information of the boundary passing train to the second train list in the case where the going-out notification is input from the first ground apparatus.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 28, 2020
    Assignee: KYOSAN ELECTRIC MFG. CO., LTD.
    Inventors: Tomonori Itagaki, Toshifumi Nishi, Kenji Mizuno, Tamotsu Yokoyama
  • Publication number: 20200177018
    Abstract: A control device of a power supply system is configured to control inputting of electric power from a power system connected to a power distribution device to a plurality of strings connected to the power distribution device and outputting of electric power from the plurality of strings to the power system and to execute a process of stopping control for switching the at least one switching element between connection and disconnection on a string in which inputting of electric power and outputting of electric power are stopped out of the plurality of strings.
    Type: Application
    Filed: November 13, 2019
    Publication date: June 4, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200176983
    Abstract: A control device of a power supply system includes a first processing unit and a second processing unit. The first processing unit is a processing unit configured to perform a first process of determining certain strings out of a plurality of strings connected in parallel to a power distribution device. The second processing unit is a processing unit configured to perform a second process of performing inputting of electric power to the plurality of strings connected in parallel to the power distribution device or outputting of electric power from the plurality of strings to the power distribution device using at least the certain strings determined by the first processing unit.
    Type: Application
    Filed: November 22, 2019
    Publication date: June 4, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200176982
    Abstract: A control device of a power supply system includes a stopping process unit. The stopping process unit is configured to operate a switching element when connection between a power system and a main line is cut off by a system breaker and to perform a stopping process of sequentially switching battery modules which are connected to the main line such that the number of battery modules which are connected to the main line decreases gradually.
    Type: Application
    Filed: November 21, 2019
    Publication date: June 4, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta Izumi, Kenji Kimura, Toshihiro Katsuda, Kohei Matsuura, Junichi Matsumoto, Shuji Tomura, Shigeaki Goto, Naoki Yanagizawa, Kyosuke Tanemura, Kazuo Ootsuka, Takayuki Ban, Hironobu Nishi
  • Publication number: 20200177019
    Abstract: A power supply system disclosed here is connected to an electric power system through a distribution device. The power supply system includes a plurality of strings connected to the distribution device and a failure detector. The failure detector of the power supply system is configured to perform a first process of connecting at least one battery module to a main line to set a voltage detected by a string voltage detector at a voltage higher than a predetermined voltage in a state where a switch disconnects the distribution device and the main line, a second process of sending a disconnecting signal for disconnecting all the sweep modules from the main line, and a third process of determining whether the voltage detected by the string voltage detector is lower than the predetermined determination voltage or not after the second process.
    Type: Application
    Filed: November 18, 2019
    Publication date: June 4, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200177178
    Abstract: A power supply system includes a plurality of sweep modules that is connected to a main line. Each sweep module includes a switching element that switches between connection and disconnection between a battery module and the main line and is formed of a MOSFET. A failure detecting device of the power supply system includes a temperature detecting unit configured to detect temperatures of the plurality of sweep modules and a failure determining unit configured to determine whether a difference between a temperature of one sweep module selected from the plurality of sweep modules and a reference temperature which is determined based on the temperatures of other sweep modules is greater than a predetermined threshold value.
    Type: Application
    Filed: November 15, 2019
    Publication date: June 4, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200166576
    Abstract: A power supply system includes a plurality of sweep modules, a defect detecting unit, and a control unit. Each sweep module includes a battery module and a power circuit module. The defect detecting unit detects a defect for each sweep module. The number of sweep modules is greater S (S?2) than a minimum number of sweep modules required for operation. When the number of defective sweep modules in which a defect has been detected is equal to or less than F (2?F?S), the control unit is configured to disconnect the defective sweep modules from a main line and to continuously execute sweep control.
    Type: Application
    Filed: November 15, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200169081
    Abstract: A power supply system includes a plurality of sweep modules. Each sweep module includes a battery module, an input and output circuit, a switching element, a capacitor, and a line. The input and output circuit connects the battery module to a main line. The switching element switches between connection and disconnection between the battery module and the main line. The capacitor is attached in parallel to the battery module. The line connects the input and output circuit to the battery module. The line is maintained in a state in which a loop portion is formed.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200169080
    Abstract: The present teaching provides a power supply system capable of fully utilizing a plurality of batteries having different performances. A power supply system disclosed here includes a main line, a plurality of sweep modules, and a controller. Each of the sweep modules includes a battery module and an electric power circuit module. The electric power circuit module includes a switching device for connecting a connection state between the battery modules and the main line between connection and disconnection. The controller performs sweep control of sequentially switching the battery module connected to the main line among the plurality of battery modules. During an input of electric power from outside, the controller disconnects the battery module whose SOC level satisfies a high SOC condition from the main line (S7), and continues sweep control (S8, S9).
    Type: Application
    Filed: November 18, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200169115
    Abstract: The present teaching provides a power supply system capable of appropriately performing replacement or repairing of a component of a module where a problem occurs without stopping the entire operation, in a case where the problem occurs in of the module in a plurality of modules. The power supply system includes a plurality of sweep modules, a problem detector, an indicator, and a controller. Each sweep module includes a battery module and an electric power circuit module. The problem detector detects a problem for each sweep module. The indicator indicates a sweep module in which a problem is detected. In a case where a problem is detected in the sweep module (S4: YES), the controller causes the indicator to indicate a failure sweep module in which the problem is detected (S5). The controller disconnects the failure sweep module from a main line, and continues sweep control (SG through S8).
    Type: Application
    Filed: November 18, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Publication number: 20200169082
    Abstract: A power supply system includes a main line, a plurality of sweep modules, and a control unit. Each sweep module includes a battery module and a power circuit module. The power circuit module switches between connection and disconnection between the battery module and the main line. The control unit executes sweep control for sequentially switching the battery modules which are to be connected to the main line. The control unit maintains connection of a refreshing module which is to be subjected to refreshing charging/discharging to the main line while sweep control is being executed in a state in which the refreshing module is excluded in at least one of outputting of electric power to the outside and inputting of electric power from the outside.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 28, 2020
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Juni YASOSHIMA, Junta IZUMI, Kenji KIMURA, Toshihiro KATSUDA, Kohei MATSUURA, Junichi MATSUMOTO, Shuji TOMURA, Shigeaki GOTO, Naoki YANAGIZAWA, Kyosuke TANEMURA, Kazuo OOTSUKA, Takayuki BAN, Hironobu NISHI
  • Patent number: 10630783
    Abstract: A terminal management apparatus includes a first connection unit, a second connection unit, a setup information management unit, and a communication controller. The first connection unit is connectable to a terminal apparatus via a wireless communication link. The terminal apparatus serves as a target being managed. The second connection unit is connectable to the terminal apparatus via at least one of a wireless communication link and a wired communication line using a connection path different from a connection path used by the first connection unit. The setup information management unit obtains and manages setup information used for establishing a connection with the terminal apparatus, from the terminal apparatus via the first connection unit. The communication controller connects to the terminal apparatus via the second communication unit using identification information of the terminal apparatus managed by the setup information management unit, and communicates with the terminal apparatus.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: April 21, 2020
    Assignee: FUJI XEROX CO., LTD.
    Inventors: Kenji Kuroishi, Chigusa Nakata, Hiroshi Honda, Eiji Nishi, Yoshihiro Sekine, Hiroshi Mikuriya, Takeshi Furuya, Ryuichi Ishizuka
  • Patent number: 10593789
    Abstract: A semiconductor apparatus includes a semiconductor substrate including a semiconductor device. The semiconductor device includes a first n-type buffer layer, a second n-type buffer layer, and a first p-type semiconductor region. A first maximum peak concentration of first n-type carriers contained in the first n-type buffer layer is smaller than a second maximum peak concentration of second n-type carriers contained in the second n-type buffer layer. The first p-type semiconductor region is formed in the first n-type buffer layer. The first p-type semiconductor region has a narrower width than the first n-type buffer layer.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: March 17, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Suzuki, Mitsuru Kaneda, Koichi Nishi
  • Patent number: 10562551
    Abstract: In a ground apparatus system, polling communication where a ground apparatus serves as a primary station and a train serves as a secondary station is performed. A ground apparatus that is a ground apparatus of the ground apparatus system and is capable of communicating with a platform screen door control apparatus performs polling communication at a first communication frequency to obtain train location information from the train. When the train reaches an impending arrival range including a stop position at a station, the ground apparatus switches the communication frequency to a second communication frequency higher than the first communication frequency. The apparatus then transmits, to the train through polling communication, synchronized opening and closing control instruction information received from the platform screen door control apparatus, and transmits, to the platform screen door control apparatus, train state information obtained from the train through polling communication.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: February 18, 2020
    Assignee: KYOSAN ELECTRIC MFG. CO., LTD.
    Inventors: Kenji Mizuno, Tamotsu Yokoyama, Tomonori Itagaki, Toshifumi Nishi
  • Patent number: 10513278
    Abstract: A ground apparatus system performs polling communication in which ground apparatuses are set as primary stations and trains are set as secondary stations. The ground apparatus stores a train list of train IDs of trains to be managed. The ground apparatus acquires, train information including train location information from the train to determine a train location of each train included in the train list. The ground apparatus calculates a coming-in allowable range of each train to generate traveling control information, and transmits the traveling control information to the train. The ground apparatus updates the train list by adding a train ID of a train that comes in a radio communication control region of the ground apparatus and deleting a train ID of a train that goes out from the radio communication control region by performing handover control of the trains to be managed with an adjacent ground apparatus.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: December 24, 2019
    Assignee: KYOSAN ELECTRIC MFG. CO., LTD.
    Inventors: Tomonori Itagaki, Toshifumi Nishi, Kenji Mizuno, Tamotsu Yokoyama