Patents by Inventor Kenji Takubo

Kenji Takubo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10267618
    Abstract: A defect detection apparatus is provided that can inspect a measurement region of a target object at one time and without inconsistencies arising within the measurement region. A defect detection apparatus 10 includes: a generation unit (signal generator 11 and vibrator 12) for generating an elastic wave in a target object S; an illumination unit (pulsed laser light source 13 and illumination light lens 14) for performing stroboscopic illumination onto a measurement region of a surface of the target object S; and a displacement measurement unit (speckle shearing interferometer 15) for collectively measuring displacements in a normal direction at each point of the measurement region with respect to at least three mutually-different phases of the elastic wave by controlling a phase of the elastic wave and a timing of the stroboscopic illumination.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: April 23, 2019
    Assignee: SHIMADZU CORPORATION
    Inventors: Takahide Hatahori, Kenji Takubo
  • Publication number: 20180356205
    Abstract: A defect detection method includes the following processes: a) stroboscopically illuminating the entire surface of an object within an examination area of the object while inducing a first elastic wave across the examination area on the object, and controlling the phase of the elastic wave and the timing of the stroboscopic illumination to collectively measure a back-and-forth displacement of each point within the examination area in at least three phases of the elastic wave; b) identifying a surface location which is the location of a defect on the examination area, based on the back-and-forth displacement of each point within the examination area in the at least three different phases; and c) injecting a second elastic wave into a region inside the surface location from a limited area including the surface location, and determining the location and/or size in the depth direction of the defect, based on a response wave.
    Type: Application
    Filed: June 11, 2018
    Publication date: December 13, 2018
    Applicant: SHIMADZU CORPORATION
    Inventors: Takahide HATAHORI, Yuya NAGATA, Kenji TAKUBO
  • Publication number: 20180283847
    Abstract: A vibration measurement device includes: a vibration-inducing section; a laser source; a scanning section for illuminating a partial area of a measurement area on an object with laser light and moving the illumination area; an illumination control section for sequentially illuminating each point within the measurement area with an illuminating duration equal to or shorter than one third of the vibration period; a displacement measurement section for measuring, for each point within the measurement area, an interfering light obtained by splitting an object light from the object into two bundles of light to measure a relative displacement in a back-and-forth direction between two closely-located points within the measurement area; and a vibration state determination section for determining the state of vibration of the entire measurement area, based on the relative displacement in the back-and-forth direction between two closely-located points at each point within the measurement area.
    Type: Application
    Filed: March 28, 2018
    Publication date: October 4, 2018
    Applicant: SHIMADZU CORPORATION
    Inventors: Takahide HATAHORI, Yuya NAGATA, Kenji TAKUBO
  • Publication number: 20170350690
    Abstract: A defect detection apparatus is provided that can inspect a measurement region of a target object at one time and without inconsistencies arising within the measurement region. A defect detection apparatus 10 includes: a generation unit (signal generator 11 and vibrator 12) for generating an elastic wave in a target object S; an illumination unit (pulsed laser light source 13 and illumination light lens 14) for performing stroboscopic illumination onto a measurement region of a surface of the target object S; and a displacement measurement unit (speckle shearing interferometer 15) for collectively measuring displacements in a normal direction at each point of the measurement region with respect to at least three mutually-different phases of the elastic wave by controlling a phase of the elastic wave and a timing of the stroboscopic illumination.
    Type: Application
    Filed: June 1, 2017
    Publication date: December 7, 2017
    Applicant: SHIMADZU CORPORATION
    Inventors: Takahide HATAHORI, Kenji TAKUBO
  • Patent number: 9429471
    Abstract: A plurality of photodiodes arrayed in a one-dimensional form are divided into a plurality of groups. The structure of an antireflection coating is changed for each group so that all the surfaces of the photodiodes belonging to each group are covered with an antireflection coating having a transmittance characteristic which shows a maximum transmittance within a range of wavelengths of light to be received by those photodiodes. In particular, a SiO2 coating layer on the silicon substrate and an Al2O3 coating layer are common to all the photodiodes, while the structure of the upper layers are modified with respect to the wavelength. Within an ultraviolet wavelength region, the coating structure is more finely changed with respect to the wavelength. By such a design, the transmittance can be improved while making the best efforts to avoid a complex manufacturing process.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: August 30, 2016
    Assignees: SHIMADZU CORPORATION, TOHOKU UNIVERSITY
    Inventors: Hideki Tominaga, Ryuta Hirose, Kenji Takubo, Shigetoshi Sugawa, Rihito Kuroda
  • Publication number: 20150296160
    Abstract: A logical gate circuit (5) and four stages of flip flips (4a-4d) are assigned to each pixel (1). A controller (7) inputs four phase identification signals into the logical gate circuit (5) and also inputs a start signal STR into a shift register (4) synchronously with the four mutually different phases defined by the phase identification signals. During one round of scanning all the pixels (1) for a readout control, if an enable signal ENBL is set to “0” while an output of a phase identification circuit (110) is “1”, a charge accumulation time at the pixel (1) concerned becomes equal to a readout period T. If the enable signal ENBL is set to “1” while the output of the phase identification circuit (110) is “1”, electric charges accumulated in a photodiode (11) until that point are entirely discarded, so that the charge accumulation time becomes shorter than the readout period T.
    Type: Application
    Filed: October 28, 2013
    Publication date: October 15, 2015
    Applicants: TOHOKU UNIVERSITY, SHIMADZU CORPORATION
    Inventors: Hideki Tominaga, Ryuta Hirose, Kenji Takubo, Shigetoshi Sugawa, Rihito Kuroda
  • Patent number: 9030582
    Abstract: A transistor (24) which acts as a load-current source for a source follower amplifying transistor (22) for outputting a pixel signal to a pixel output line (40) is provided in each picture element (10), whereby a high bias current is prevented from passing through the high-resistance pixel output line (40), so that a variation in an offset voltage among picture elements is suppressed. Inclusion of the high-resistance pixel output line (40) into the source follower amplification circuit is also avoided, whereby the gain characteristics are prevented from deterioration. Thus, the S/N ratio of the picture element is improved so as to enhance the quality of the images.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: May 12, 2015
    Assignees: Shimadzu Corporation, Tohoku University
    Inventors: Shigetoshi Sugawa, Hideki Tominaga, Kenji Takubo, Yasushi Kondo
  • Publication number: 20150048239
    Abstract: A plurality of photodiodes arrayed in a one-dimensional form are divided into a plurality of groups. The structure of an antireflection coating is changed for each group so that all the surfaces of the photodiodes belonging to each group are covered with an antireflection coating having a transmittance characteristic which shows a maximum transmittance within a range of wavelengths of light to be received by those photodiodes. In particular, a SiO2 coating layer on the silicon substrate and an Al2O3 coating layer are common to all the photodiodes, while the structure of the upper layers are modified with respect to the wavelength. Within an ultraviolet wavelength region, the coating structure is more finely changed with respect to the wavelength. By such a design, the transmittance can be improved while making the best efforts to avoid a complex manufacturing process.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 19, 2015
    Applicants: TOHOKU UNIVERSITY, SHIMADZU CORPORATION
    Inventors: Hideki Tominaga, Ryuta Hirose, Kenji Takubo, Shigetoshi Sugawa, Rihito Kuroda
  • Publication number: 20130308023
    Abstract: A transistor (24) which acts as a load-current source for a source follower amplifying transistor (22) for outputting a pixel signal to a pixel output line (40) is provided in each picture element (10), whereby a high bias current is prevented from passing through the high-resistance pixel output line (40), so that a variation in an offset voltage among picture elements is suppressed. Inclusion of the high-resistance pixel output line (40) into the source follower amplification circuit is also avoided, whereby the gain characteristics are prevented from deterioration. Thus, the S/N ratio of the picture element is improved so as to enhance the quality of the images.
    Type: Application
    Filed: February 8, 2011
    Publication date: November 21, 2013
    Applicants: Shimadzu Corporation, Tohoku University
    Inventors: Shigetoshi Sugawa, Hideki Tominaga, Kenji Takubo, Yasushi Kondo
  • Patent number: 8530947
    Abstract: A floating diffusion region is formed at an edge of a light-receiving surface of an embedded photodiode, with a transfer gate electrode located therebetween. A first region, with radially extending portions centered on the FD region, and a second region, located to the outside of the first region, are created in the substantially sector-shaped light-receiving surface. A dopant whose conductivity type is the same as the signal charges to be collected in the first region are introduced, whereby an electric field for moving the signal charges from the radially extending sections towards the center is created due to a three-dimensional field effect. As a result, the charge-transfer time is reduced. Additionally, since a circuit element in the subsequent stage can be placed adjacent to the floating diffusion region, the parasitic capacitance of the floating diffusion region can be reduced and a highly sensitive element can be obtained.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: September 10, 2013
    Assignees: Shimadzu Corporation, Tohoku University
    Inventors: Yasushi Kondo, Hideki Tominaga, Kenji Takubo, Ryuta Hirose, Shigetoshi Sugawa, Hideki Mutoh
  • Patent number: 8508739
    Abstract: A gas concentration measurement device which utilizes a TDLAS measurement method, and in which the phase-sensitive detection can be performed by digital processing using an integer-arithmetic device, is provided. In the gas concentration measurement device according to the present invention, AC components corresponding to integer multiples of a modulation frequency f contained in an input signal are removed by taking a moving average of data obtained from an output signal of a multiplier 62 for a period of time corresponding to one cycle of the modulation frequency f . As a result, a DC component in the output signal of a digital filter 63 relatively increases, making it easier to extract the DC component by a digital low-pass filter 64, so that a sufficiently accurate phase-sensitive detection can be made even if a digital processing based on integer arithmetic is used.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: August 13, 2013
    Assignee: Shimadzu Corporation
    Inventors: Yousuke Hoshino, Kenji Takubo, Naoji Moriya
  • Patent number: 8313628
    Abstract: A distribution of AC electric field regularly arranged in a cell is formed while storing a sample having particles dispersed in a medium in the cell, whereby the particles are dielectrically migrated in the medium to generate a diffraction grating by density distribution of the particles. Diffracted light generated by irradiating the diffraction grating by density distribution with measuring light is detected, and evaluation of dielectrophoretic intensities of the particles and/or the medium is performed from the detection result. According to this method, evaluation of dielectrophoretic characteristics can be performed without adhering a phosphor to particles, and since even a particle small in size can achieve a detection level by collecting a number of such particles to form a diffraction grating, dielectric characteristics of microparticles of several nanometers in diameter can be thus quantitatively measured with high sensitivity.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: November 20, 2012
    Assignee: Shimadzu Corporation
    Inventors: Yoshio Tsunazawa, Yukihisa Wada, Naoji Moriya, Kenji Takubo, Shinichiro Totoki, Haruo Shimaoka
  • Publication number: 20120188549
    Abstract: A gas concentration measurement device which utilizes a TDLAS measurement method, and in which the phase-sensitive detection can be performed by digital processing using an integer-arithmetic device, is provided. In the gas concentration measurement device according to the present invention, AC components corresponding to integer multiples of a modulation frequency f contained in an input signal are removed by taking a moving average of data obtained from an output signal of a multiplier 62 for a period of time corresponding to one cycle of the modulation frequency f. As a result, a DC component in the output signal of a digital filter 63 relatively increases, making it easier to extract the DC component by a digital low-pass filter 64, so that a sufficiently accurate phase-sensitive detection can be made even if a digital processing based on integer arithmetic is used.
    Type: Application
    Filed: July 22, 2011
    Publication date: July 26, 2012
    Applicant: SHIMADZU CORPORATION
    Inventors: Yousuke Hoshino, Kenji Takubo, Naoji Moriya
  • Publication number: 20120112255
    Abstract: A floating diffusion region is formed at an edge of a light-receiving surface of an embedded photodiode, with a transfer gate electrode located therebetween. A first region, with radially extending portions centered on the FD region, and a second region, located to the outside of the first region, are created in the substantially sector-shaped light-receiving surface. A dopant whose conductivity type is the same as the signal charges to be collected in the first region are introduced, whereby an electric field for moving the signal charges from the radially extending sections towards the center is created due to a three-dimensional field effect. As a result, the charge-transfer time is reduced. Additionally, since a circuit element in the subsequent stage can be placed adjacent to the floating diffusion region, the parasitic capacitance of the floating diffusion region can be reduced and a highly sensitive element can be obtained.
    Type: Application
    Filed: June 23, 2010
    Publication date: May 10, 2012
    Applicants: TOHOKU UNIVERSITY, SHIMADZU CORPORATION
    Inventors: Yasushi Kondo, Hideki Tominaga, Kenji Takubo, Ryuta Hirose, Shigetoshi Sugawa, Hideki Mutoh
  • Patent number: 7911610
    Abstract: The present invention relates to an optical measuring device which includes container for storing a sample, and an electrode pair for generating an electric field distribution upon impression of a voltage by an electrical power supply, thereby generating or extinguishing diffraction grating formed by a density modulation of particles within the sample. The particles within the sample are evaluated based upon a temporal change of an intensity of a diffracted light beam obtained by irradiating a light beam upon the diffraction grating formed by the density modulation of the particles. The electrodes constituting the electrode pair are configured to have a comb-like electrode teeth that are parallel with each other and are arranged such that the electrode teeth of one electrode are inserted between the electrode teeth of the other electrode. From such configuration, an optical measuring device of a high sensitivity and excellent S/N ratio can be obtained.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: March 22, 2011
    Assignee: Shimadzu Corporation
    Inventors: Naoji Moriya, Yuzo Nagumo, Yukihisa Wada, Naofumi Sakauchi, Fujio Inoue, Masahiro Takebe, Kenji Takubo, Shinichiro Totoki
  • Publication number: 20100012496
    Abstract: A distribution of AC electric field regularly arranged in a cell is formed while storing a sample having particles dispersed in a medium in the cell, whereby the particles are dielectrically migrated in the medium to generate a diffraction grating by density distribution of the particles. Diffracted light generated by irradiating the diffraction grating by density distribution with measuring light is detected, and evaluation of dielectrophoretic intensities of the particles and/or the medium is performed from the detection result. According to this method, evaluation of dielectrophoretic characteristics can be performed without adhering a phosphor to particles, and since even a particle small in size can achieve a detection level by collecting a number of such particles to form a diffraction grating, dielectric characteristics of microparticles of several nanometers in diameter can be thus quantitatively measured with high sensitivity.
    Type: Application
    Filed: July 19, 2006
    Publication date: January 21, 2010
    Inventors: Yoshio Tsunazawa, Yukihisa Wada, Naoji Moriya, Kenji Takubo, Shinichiro Totoki, Haruo Shimaoka
  • Publication number: 20090251695
    Abstract: Within a container 1 which is storing a sample is generated a regularly arranged electric field distribution by an impression of a voltage upon an electrode pair 2 provided within the container 1, thereby generating diffraction grating formed by a density modulation of particles within the sample within the container 1, there is obtained information upon a diffusion of the particles based upon a temporal change in an extinction process of an intensity of a diffracted light beam obtained by irradiating a light beam upon the diffraction grating formed by the density modulation of the particles, the electrodes 21, 22 constituting the electrode pair 2 are configured to have multiple linear electrode teeth 21a, 22a parallel with each other, the electrodes 21, 22 are arranged such that the electrode teeth 21a of one electrode 21 are inserted between the electrode teeth 22a of the other electrode 22, thereby increasing the width of the diffraction grating formed by the density modulation of the particles, and a rati
    Type: Application
    Filed: January 17, 2006
    Publication date: October 8, 2009
    Inventors: Naoji Moriya, Yuzo Nagumo, Yukihisa Wada, Naofumi Sakauchi, Fujio Inoue, Masahiro Takebe, Kenji Takubo, Shinichiro Totoki
  • Patent number: 7432971
    Abstract: A plurality of storage pixels within each unit pixel are arranged successively so that signal electrons for each storage pixel are moved independently through the storage pixels. Signal electrons newly generated in a photosensitive pixel are added to relevant signal electrons among the signal electrons moved independently through the storage pixels. That is, signal electrons generated in the photosensitive pixel for each of highly relevant frames are superimposed in the same storage pixel and stored in each storage pixel. The signal electrons stored in each storage pixel are subsequently amplified in and outputted from an output amplifier only once. Thus, read noise occurs only once at the output amplifier, to obtain images of high signal-to-noise ratio.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: October 7, 2008
    Assignee: Shimadzu Corporation
    Inventors: Kenji Takubo, Yasushi Kondo
  • Patent number: 7394484
    Abstract: A photographing apparatus includes a photographing plan memory for setting photographing conditions based on a predetermined photographing plan, a vibration sensor for detecting vibration caused by an explosion of a balloon serving as a photographic subject, and a trigger generating circuit for taking in the timing of detection by the vibration sensor as a trigger. The above photographing plan is prepared beforehand for changing from low-speed photography to high-speed photography in response to the trigger, and changing from high-speed photography to low-speed photography after acquiring “40 frames”. With this plan, the low-speed photography is adopted before and after the balloon explosion, an amount of photographic data tends to be small. Photographs may be taken out within limited photographic data, even with a limited memory capacity. At a moment of balloon explosion, rapid variations due to the explosion may be photographed by high-speed photography with high accuracy.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: July 1, 2008
    Assignees: Shimadzu Corporation
    Inventors: Hideki Soya, Kenji Takubo, Yasushi Kondo, Takeharu Etoh
  • Publication number: 20040141300
    Abstract: A silver thin film (with a thickness of 50 nm) and an SiO2 film (with a thickness of 10 nm) are deposited in this order on one side surface of a slide glass by ion beam sputtering deposition, so that a supporting substrate for sample solution is formed. A sample solution containing fluorescence molecules is placed on the SiO2 film of the supporting substrate and a cover glass is placed on the sample solution. When light is entered upon the interface between the slide glass and the SiO2 film at an incident angle of 59 to 60°, surface plasmon resonance is excited at the interface and thus an evanescent field is reinforced, so that fluorescence is generated efficiently from the fluorescence molecules contained in the sample solution.
    Type: Application
    Filed: July 22, 2003
    Publication date: July 22, 2004
    Inventors: Kenji Takubo, Shin Nakamura