Patents by Inventor Kenneth A. Feldmann

Kenneth A. Feldmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12227751
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: August 14, 2023
    Date of Patent: February 18, 2025
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 12163140
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline conditions with respect to wild-type plants grown under similar conditions.
    Type: Grant
    Filed: October 26, 2023
    Date of Patent: December 10, 2024
    Assignee: Ceres, Inc.
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Patent number: 12163141
    Abstract: Isolated polynucleotides and polypeptides encoded thereby are described, together with the use of those products for making transgenic plants with increased tolerance to abiotic stress (e.g., high or low temperature, drought, flood).
    Type: Grant
    Filed: November 1, 2023
    Date of Patent: December 10, 2024
    Assignee: Ceres, Inc.
    Inventors: Cory Christensen, Nestor Apuya, Kenneth A. Feldmann
  • Patent number: 12152246
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline conditions with respect to wild-type plants grown under similar conditions.
    Type: Grant
    Filed: October 9, 2023
    Date of Patent: November 26, 2024
    Assignee: Ceres, Inc.
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Patent number: 12043841
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased[RCL2] low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: July 23, 2024
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-dinh Dang, Kenneth A. Feldmann, Roger Pennell, Shing Kwok, Hongyu Zhang, Cory Christensen, Jack Okamuro, Fasong Zhou, Wuyi Wang, Emilio Margolles-Clark, Gerard Magpantay, Julissa Sosa, Nestor Apuya, Kerstin Piccolo, Bonnie Hund, Nickolai Alexandrov, Vyacheslav Brover, Peter Mascia
  • Publication number: 20240167049
    Abstract: Isolated polynucleotides and polypeptides encoded thereby are described, together with the use of those products for making transgenic plants with increased tolerance to abiotic stress (e.g., high or low temperature, drought, flood).
    Type: Application
    Filed: November 1, 2023
    Publication date: May 23, 2024
    Inventors: Cory Christensen, Nestor Apuya, Kenneth A. Feldmann
  • Patent number: 11981905
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides. The present invention further relates to the uses of these nucleic acid molecules and polypeptides. For example, the nucleic acid molecules and polypeptides could be used in making enzymes or used to make plants, plant cells, plant materials or seeds of a plant having such modulated growth or phenotype characteristics that are altered with respect to wild type plants grown under similar conditions.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: May 14, 2024
    Assignee: Ceres, Inc.
    Inventors: Vyacheslav Brover, Timothy J. Swaller, Kenneth A. Feldmann, Maxim Troukhan
  • Patent number: 11981906
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased[RCL2] low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: May 14, 2024
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-dinh Dang, Kenneth A. Feldmann, Roger Pennell, Shing Kwok, Hongyu Zhang, Cory Christensen, Jack Okamuro, Fasong Zhou, Wuyi Wang, Emilio Margolles-Clark, Gerard Magpantay, Julissa Sosa, Nestor Apuya, Kerstin Piccolo, Bonnie Hund, Nickolai Alexandrov, Vyacheslav Brover, Peter Mascia
  • Publication number: 20240102041
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline conditions with respect to wild-type plants grown under similar conditions.
    Type: Application
    Filed: October 26, 2023
    Publication date: March 28, 2024
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Publication number: 20240102040
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline conditions with respect to wild-type plants grown under similar conditions.
    Type: Application
    Filed: October 9, 2023
    Publication date: March 28, 2024
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Publication number: 20240067981
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: August 14, 2023
    Publication date: February 29, 2024
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 11898152
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline and/or oxidative stress conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline and/or oxidative stress conditions with respect to wild-type plants grown under similar conditions.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: February 13, 2024
    Assignee: Ceres, Inc.
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Patent number: 11873503
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline and/or oxidative stress conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline and/or oxidative stress conditions with respect to wild-type plants grown under similar conditions.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: January 16, 2024
    Assignee: Ceres, Inc.
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Patent number: 11859195
    Abstract: Isolated polynucleotides and polypeptides encoded thereby are described, together with the use of those products for making transgenic plants with increased tolerance to abiotic stress (e.g., high or low temperature, drought, flood).
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: January 2, 2024
    Assignee: Ceres, Inc.
    Inventors: Cory Christensen, Nestor Apuya, Kenneth A. Feldmann
  • Patent number: 11840699
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline conditions with respect to wild-type plants grown under similar conditions.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: December 12, 2023
    Assignee: Ceres, Inc.
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Patent number: 11814636
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline conditions with respect to wild-type plants grown under similar conditions.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: November 14, 2023
    Assignee: Ceres, Inc.
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Patent number: 11781150
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: October 10, 2023
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 11773404
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: October 3, 2023
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 11773405
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: October 3, 2023
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 11739340
    Abstract: The present invention is directed to promoter sequences and promoter control elements, polynucleotide constructs comprising the promoters and control elements, and methods of identifying the promoters, control elements, or fragments thereof. The invention further relates to the use of the present promoters or promoter control elements to modulate transcript levels.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: August 29, 2023
    Assignee: Ceres, Inc.
    Inventors: Zhihong Cook, Yiwen Fang, Kenneth A. Feldmann, Edward Kiegle, Shing Kwok, Yu-Ping Lu, Leonard Medrano, Roger Pennell, Richard Schneeberger, Chuan-Yin Wu, Nestor Apuya, Jack K. Okamuro, Diane K. Jofuku, Jonathan Donson, David Van-Dinh Dang, Emilio Margolles-Clark, Nickolai Alexandrov, Tatiana Tatarinova, Noah Theiss, Danielle Grizard, Shawna Davis, Dennis Robles, Michael Portereiko