Patents by Inventor Kenneth A. Feldmann

Kenneth A. Feldmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210062204
    Abstract: The present invention is directed to promoter sequences and promoter control elements, polynucleotide constructs comprising the promoters and control elements, and methods of identifying the promoters, control elements, or fragments thereof. The invention further relates to the use of the present promoters or promoter control elements to modulate transcript levels.
    Type: Application
    Filed: July 24, 2020
    Publication date: March 4, 2021
    Inventors: Zhihong Cook, Yiwen Fang, Kenneth A. Feldmann, Edward Kiegle, Shing Kwok, Yu-Ping Lu, Leonard Medrano, Roger Pennell, Richard Schneeberger, Chuan-Yin Wu, Nestor Apuya, Jack K. Okamuro, Diane K. Jofuku, Jonathan Donson, David Van-Dinh Dang, Emilio Margolles-Clark, Nickolai Alexandrov, Tatiana Tatarinova, Noah Theiss, Danielle Grizard, Shawna Davis, Dennis Robles, Michael Portereiko
  • Publication number: 20200392526
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: April 28, 2020
    Publication date: December 17, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 10851383
    Abstract: The present invention is directed to promoter sequences and promoter control elements, polynucleotide constructs comprising the promoters and control elements, and methods of identifying the promoters, control elements, or fragments thereof. The invention further relates to the use of the present promoters or promoter control elements to modulate transcript levels.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: December 1, 2020
    Assignee: Ceres, Inc.
    Inventors: Zhihong Cook, Yiwen Fang, Kenneth A. Feldmann, Edward Kiegle, Shing Kwok, Yu-Ping Lu, Leonard Medrano, Roger Pennell, Richard Schneeberger, Chuan-Yin Wu, Nestor Apuya, Jack K. Okamuro, Diane K. Jofuku, Jonathan Donson, David Van-Dinh Dang, Emilio Margolles-Clark, Nickolai Alexandrov, Tatiana Tatarinova, Noah Theiss, Danielle Grizard, Shawna Davis, Dennis Robles, Michael Portereiko
  • Patent number: 10815494
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased[RCL2] low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: October 27, 2020
    Assignee: Ceres, Inc.
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-dinh Dang, Kenneth A. Feldmann, Roger Pennell, Shing Kwok, Hongyu Zhang, Cory Christensen, Jack Okamuro, Fasong Zhou, Wuyi Wang, Emilio Margolles-Clark, Gerard Magpantay, Julissa Sosa, Nestor Apuya, Kerstin Piccolo, Bonnie Hund, Nickolai Alexandrov, Vyacheslav Brover, Peter Mascia
  • Publication number: 20200299716
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline conditions with respect to wild-type plants grown under similar conditions.
    Type: Application
    Filed: April 27, 2020
    Publication date: September 24, 2020
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Publication number: 20200299714
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: April 28, 2020
    Publication date: September 24, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Publication number: 20200299715
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline conditions with respect to wild-type plants grown under similar conditions.
    Type: Application
    Filed: April 27, 2020
    Publication date: September 24, 2020
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Publication number: 20200239902
    Abstract: Isolated polynucleotides and polypeptides encoded thereby are described, together with the use of those products for making transgenic plants with increased tolerance to abiotic stress (e.g., high or low temperature, drought, flood).
    Type: Application
    Filed: February 18, 2020
    Publication date: July 30, 2020
    Inventors: CORY CHRISTENSEN, NESTOR APUYA, KENNETH A. FELDMANN
  • Publication number: 20200216854
    Abstract: Isolated polynucleotides and polypeptides encoded thereby are described, together with the use of those products for making transgenic plants with increased tolerance to abiotic stress (e.g., high or low temperature, drought, flood).
    Type: Application
    Filed: February 18, 2020
    Publication date: July 9, 2020
    Inventors: Cory Christensen, Nestor Apuya, Kenneth A. Feldmann
  • Patent number: 10696978
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline conditions with respect to wild-type plants grown under similar conditions.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: June 30, 2020
    Assignee: CERES, INC.
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Publication number: 20200181636
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline and/or oxidative stress conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline and/or oxidative stress conditions with respect to wild-type plants grown under similar conditions.
    Type: Application
    Filed: January 23, 2020
    Publication date: June 11, 2020
    Inventors: FASONG ZHOU, KENNETH A. FELDMANN, JULISSA SOSA
  • Publication number: 20200181635
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: January 28, 2020
    Publication date: June 11, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Patent number: 10655139
    Abstract: Isolated polynucleotides and polypeptides encoded thereby are described, together with the use of those products for making transgenic plants with increased tolerance to abiotic stress (e.g., high or low temperature, drought, flood).
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: May 19, 2020
    Assignee: CERES, INC.
    Inventors: Cory Christensen, Nestor Apuya, Kenneth A. Feldmann
  • Publication number: 20200140881
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: December 26, 2019
    Publication date: May 7, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann
  • Publication number: 20200115719
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline and/or oxidative stress conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline and/or oxidative stress conditions with respect to wild-type plants grown under similar conditions.
    Type: Application
    Filed: November 25, 2019
    Publication date: April 16, 2020
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Patent number: 10619166
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline and/or oxidative stress conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline and/or oxidative stress conditions with respect to wild-type plants grown under similar conditions.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: April 14, 2020
    Assignee: Ceres, Inc.
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Publication number: 20200056199
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: August 28, 2019
    Publication date: February 20, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann, Roger Pennell, Shing Kwok, Hongyu Zhang, Cory Christensen, Jack Okamuro, Fasong Zhou, Wuyi Wang, Emilio Margolles-Clark, Gerard Magpantay, Julissa Sosa, Nestor Apuya, Kerstin Piccolo, Bonnie Hund, Nickolai Alexandrov, Vyacheslav Brover, Peter Mascia
  • Publication number: 20200056200
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides able confer the trait of improved plant size, vegetative growth, growth rate, seedling vigor and/or biomass in plants challenged with saline conditions. The present invention further relates to the use of these nucleic acid molecules and polypeptides in making transgenic plants, plant cells, plant materials or seeds of a plant having plant size, vegetative growth, growth rate, seedling vigor and/or biomass that are improved in saline conditions with respect to wild-type plants grown under similar conditions.
    Type: Application
    Filed: August 28, 2019
    Publication date: February 20, 2020
    Inventors: Fasong Zhou, Kenneth A. Feldmann, Julissa Sosa
  • Publication number: 20200048653
    Abstract: Methods and materials for modulating low-nitrogen tolerance levels in plants are disclosed. For example, nucleic acids encoding low nitrogen tolerance-modulating polypeptides are disclosed as well as methods for using such nucleic acids to transform plant cells. Also disclosed are plants having increased low-nitrogen tolerance levels and plant products produced from plants having increased low-nitrogen tolerance levels.
    Type: Application
    Filed: August 26, 2019
    Publication date: February 13, 2020
    Inventors: Gregory Nadzan, Richard Schneeberger, Han Suk Kim, David Van-Dinh Dang, Kenneth A. Feldmann, Roger Pennell, Shing Kwok, Hongyu Zhang, Cory Christensen, Jack Okamuro, Fasong Zhou, Wuyi Wang, Emilio Margolles-Clark, Gerard Magpantay, Julissa Sosa, Nestor Apuya, Kerstin Piccolo, Bonnie Hund, Nickolai Alexandrov, Vyacheslav Brover, Peter Mascia
  • Publication number: 20190300896
    Abstract: The present invention relates to isolated nucleic acid molecules and their corresponding encoded polypeptides. The present invention further relates to the uses of these nucleic acid molecules and polypeptides. For example, the nucleic acid molecules and polypeptides could be used in making enzymes or used to make plants, plant cells, plant materials or seeds of a plant having such modulated growth or phenotype characteristics that are altered with respect to wild type plants grown under similar conditions.
    Type: Application
    Filed: November 9, 2018
    Publication date: October 3, 2019
    Inventors: Vyacheslav Brover, Timothy J. Swaller, Kenneth A. Feldmann, Maxim Troukhan