Patents by Inventor Kenneth D. Hope

Kenneth D. Hope has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10435491
    Abstract: Disclosed herein are embodiments of a process which generally includes contacting i) a monomer or mixture of monomers, ii) a haloaluminate ionic liquid, and iii) one or more halide components in a reaction zone, and oligomerizing the monomer or mixture of monomers in the reaction zone to form an oligomer product. The combination of the haloaluminate ionic liquid and halide component can constitute a catalyst system which is used in embodiments of the process to produce the oligomer product.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: October 8, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Robert C. Coffin, Kenneth D. Hope, Michael S. Driver, Hye-Kyung Timken
  • Publication number: 20190031577
    Abstract: Disclosed is a polyalphaolefin made up of hydrogenated oligomers. The oligomers include at least 80 wt. % of a C6 to C12 normal alpha olefin monomer. The polyalphaolefin has a viscosity index greater than or equal to 110 and a kinematic viscosity at ?40° C. of less than or equal to 1750 cSt.
    Type: Application
    Filed: October 2, 2018
    Publication date: January 31, 2019
    Inventors: Qing Yang, Uriah J. Kilgore, Max P. McDaniel, Brooke L. Small, Kenneth D. Hope, Eduardo J. Baralt
  • Patent number: 10118873
    Abstract: The present invention discloses processes for oligomerizing a monomer containing C3 to C30 olefins using a chemically-treated solid oxide, such as fluorided silica-coated alumina and fluorided-chlorided silica-coated alumina.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: November 6, 2018
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Uriah J. Kilgore, Max P. McDaniel, Brooke L. Small, Kenneth D. Hope, Eduardo J. Baralt
  • Patent number: 10005972
    Abstract: Disclosed are processes for forming an oligomer product by contacting a feedstock olefin containing trisubstituted olefins with a solid acid catalyst. The oligomer product can be formed at an oligomerization temperature in a range from ?20° C. to 40° C. Polyalphaolefins produced from the oligomer product can have reduced viscosities at low temperatures.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: June 26, 2018
    Assignee: Chevron Phillips Chemical Company
    Inventors: Hu Yang, Kenneth D. Hope, Jeff C. Gee
  • Publication number: 20180127331
    Abstract: The present invention discloses processes for oligomerizing a monomer containing C3 to C30 olefins using a chemically-treated solid oxide, such as fluorided silica-coated alumina and fluorided-chlorided silica-coated alumina.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 10, 2018
    Inventors: Qing Yang, Uriah J. Kilgore, Max P. McDaniel, Brooke L. Small, Kenneth D. Hope, Eduardo J. Baralt
  • Patent number: 9890093
    Abstract: Oligomerization processes include the steps of introducing a monomer containing a C3 to C30 olefin and a chemically-treated solid oxide into a reaction zone, and oligomerizing the monomer to form an oligomer product in the reaction zone. Fluorided silica-coated alumina and fluorided-chlorided silica-coated alumina are illustrative chemically-treated solid oxides that can be used in the oligomerization processes.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 13, 2018
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Qing Yang, Uriah J. Kilgore, Max P. McDaniel, Brooke L. Small, Kenneth D. Hope, Eduardo J. Baralt
  • Patent number: 9745230
    Abstract: Methods for making alpha olefin oligomers and polyalphaolefins include a step of contacting a C4 to C20 alpha olefin monomer and a catalyst system containing a metallocene, a first activator comprising a solid oxide chemically-treated with an electron withdrawing anion, and a second activator comprising an organoaluminum compound. The alpha olefin oligomers and polyalphaolefins prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: August 29, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Patent number: 9708549
    Abstract: The present application relates to method for oligomerizing olefin or for producing polyalphaolefin utilizing catalyst mixtures comprising aluminum halides and an organic liquid carrier. A process comprising contacting 1) a catalyst mixture comprising i) an aluminum trihalide and ii) an organic liquid carrier comprising first olefins, wherein the organic liquid carrier first olefins comprise at least 60 mole % 1,2-disubstituted olefins, trisubstituted olefins, or any combination thereof; and 2) a monomer comprising second olefins to form an oligomer product. An oligomer product produced by the process comprising contacting 1) a catalyst mixture comprising i) an aluminum trihalide and ii) an organic liquid carrier comprising first olefins, wherein the organic liquid carrier olefins comprise at least 75 mole % 1,2-disubstituted olefins, trisubstituted olefins, or any combination thereof; and 2) a monomer comprising second olefins to form an oligomer product.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: July 18, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffery C. Gee, Brooke L. Small, Kenneth D. Hope, Robert C. Coffin, Steven M. Bischof
  • Publication number: 20170190992
    Abstract: Disclosed are processes for forming an oligomer product by contacting a feedstock olefin containing trisubstituted olefins with a solid acid catalyst. The oligomer product can be formed at an oligomerization temperature in a range from ?20° C. to 40° C. Polyalphaolefins produced from the oligomer product can have reduced viscosities at low temperatures.
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: Hu Yang, Kenneth D. Hope, Jeff C. Gee
  • Publication number: 20170174584
    Abstract: Oligomerization processes include the steps of introducing a monomer containing a C3 to C30 olefin and a chemically-treated solid oxide into a reaction zone, and oligomerizing the monomer to form an oligomer product in the reaction zone. Fluorided silica-coated alumina and fluorided-chlorided silica-coated alumina are illustrative chemically-treated solid oxides that can be used in the oligomerization processes.
    Type: Application
    Filed: December 22, 2015
    Publication date: June 22, 2017
    Inventors: Qing Yang, Uriah J. Kilgore, Max P. McDaniel, Brooke L. Small, Kenneth D. Hope, Eduardo J. Baralt
  • Patent number: 9631158
    Abstract: Disclosed are processes for forming an oligomer product by contacting a feedstock olefin containing trisubstituted olefins with a solid acid catalyst. The oligomer product can be formed at an oligomerization temperature in a range from ?20° C. to 40° C. Polyalphaolefins produced from the oligomer product can have reduced viscosities at low temperatures.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: April 25, 2017
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Hu Yang, Kenneth D. Hope, Jeff C. Gee
  • Publication number: 20170051087
    Abstract: Disclosed herein are embodiments of a process which generally includes contacting i) a monomer or mixture of monomers, ii) a haloaluminate ionic liquid, and iii) one or more halide components in a reaction zone, and oligomerizing the monomer or mixture of monomers in the reaction zone to form an oligomer product. The combination of the haloaluminate ionic liquid and halide component can constitute a catalyst system which is used in embodiments of the process to produce the oligomer product.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 23, 2017
    Inventors: Steven M. BISCHOF, Robert C. COFFIN, Kenneth D. HOPE, Michael S. DRIVER, Hye-Kyung TIMKEN
  • Publication number: 20160264493
    Abstract: This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Application
    Filed: April 7, 2016
    Publication date: September 15, 2016
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Patent number: 9334203
    Abstract: This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: May 10, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Publication number: 20150166429
    Abstract: The present application relates to method for oligomerizing olefin or for producing polyalphaolefin utilizing catalyst mixtures comprising aluminum halides and an organic liquid carrier. A process comprising contacting 1) a catalyst mixture comprising i) an aluminum trihalide and ii) an organic liquid carrier comprising first olefins, wherein the organic liquid carrier first olefins comprise at least 60 mole % 1,2-disubstituted olefins, trisubstituted olefins, or any combination thereof; and 2) a monomer comprising second olefins to form an oligomer product. An oligomer product produced by the process comprising contacting 1) a catalyst mixture comprising i) an aluminum trihalide and ii) an organic liquid carrier comprising first olefins, wherein the organic liquid carrier olefins comprise at least 75 mole % 1,2-disubstituted olefins, trisubstituted olefins, or any combination thereof; and 2) a monomer comprising second olefins to form an oligomer product.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Jeffery C. Gee, Brooke L. Small, Kenneth D. Hope, Robert C. Coffin, Steven M. Bischof
  • Publication number: 20150099679
    Abstract: Disclosed are processes for forming an oligomer product by contacting a feedstock olefin containing trisubstituted olefins with a solid acid catalyst. The oligomer product can be formed at an oligomerization temperature in a range from ?20° C. to 40° C. Polyalphaolefins produced from the oligomer product can have reduced viscosities at low temperatures.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Hu Yang, Kenneth D. Hope, Jeff C. Gee
  • Publication number: 20140275664
    Abstract: Disclosed are processes for forming an oligomer product by contacting a feedstock olefin containing trisubstituted olefins with a solid acid catalyst. The oligomer product can be formed at an oligomerization temperature in a range from ?20° C. to 40° C. Polyalphaolefins produced from the oligomer product can have reduced viscosities at low temperatures.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Hu Yang, Kenneth D. Hope, Jeff C. Gee
  • Publication number: 20130317265
    Abstract: This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Patent number: 8536391
    Abstract: This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: September 17, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Brooke L. Small, Kenneth D. Hope, Qing Yang, Albert P. Masino, Max P. McDaniel, Richard M. Buck, William B. Beaulieu, Eduardo J. Baralt, Eric J. Netemeyer, Bruce Kreischer
  • Patent number: 8163856
    Abstract: In an embodiment, a method is disclosed to increase the activity of an ionic liquid catalyst comprising emulsifying the ionic liquid catalyst with one or more liquid components. In an embodiment, a method is disclosed comprising introducing into a reaction zone a monomer feed and a reduced amount of ionic liquid catalyst and controlling an amount of shear present in the reaction zone to maintain a desired conversion reaction of the monomer. In an embodiment, a catalyzed reaction system is disclosed comprising a reactor configured to receive one or more liquid components and ionic liquid catalyst; a device coupled to the reactor for adding high shear to the liquid components and ionic liquid catalyst; and a controller coupled to the device for adding high shear and configured to control the amount of shear added to a catalyzed reaction zone to maintain a conversion reaction.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: April 24, 2012
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Lee H. Bergman, Kenneth D. Hope, Elizabeth A. Benham, Donald A. Stern