Patents by Inventor Kenneth E. Goodson

Kenneth E. Goodson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160250710
    Abstract: A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: removing a template membrane from the MNW; infiltrating the MNW with a bonding material; placing the bonding material on the adjacent surface; bringing an adjacent surface into contact with a top surface of the MNW while the bonding material is bondable; and allowing the bonding material to cool and form a solid bond between the MNW and the adjacent surface. A thermally-conductive and mechanically-robust bonding method for attaching a metal nanowire (MNW) array to an adjacent surface includes the steps of: choosing a bonding material based on a desired bonding process; and without removing the MNW from a template membrane that fills an interstitial volume of the MNW, depositing the bonding material onto a tip of the MNW.
    Type: Application
    Filed: January 26, 2016
    Publication date: September 1, 2016
    Inventors: John A. Starkovich, Edward M. Silverman, Jesse B. Tice, Hsiao-Hu Peng, Michael T. Barako, Kenneth E. Goodson
  • Publication number: 20160251769
    Abstract: A method for making a thermal interface material (TIM) comprises the steps of: depositing a seed layer onto a substrate; attaching a template membrane to the substrate; depositing metal into one or more of the pores of the template membrane, substantially filling the template membrane to create a vertically-aligned metal nanowire (MNW) array comprising a plurality of nanowires that grow upward from the seed layer; and after the template membrane is substantially filled with the deposited metal, removing the template membrane, leaving the plurality of nanowires attached to the seed layer. A TIM comprises: a vertically-aligned MNW array comprising a plurality of nanowires that grow upward from a seed layer deposited on the surface of a template membrane, and the template membrane being removed after MNW growth.
    Type: Application
    Filed: January 26, 2016
    Publication date: September 1, 2016
    Inventors: Edward M. Silverman, John A. Starkovich, Hsiao-Hu Peng, Jesse B. Tice, Michael T. Barako, Conor E. Coyan, Kenneth E. Goodson
  • Publication number: 20130306929
    Abstract: A multilayer-stacked phase change memory (PCM) device is provided that includes a substrate that is electrically insulative and thermally conductive, a number (n) of PCM layers deposited on the substrate, where each PCM layer is thicker than a previous PCM layer, a number (n?1) layers of passivation layer deposited between the PCM layers, where the (n) PCM layers, and the (n?1) passivation layers form a stacked multi-layer PCM on the substrate, a first electrode deposited on a first side of the multi-layer PCM stack, and a second electrode deposited on a second side of the multi-layer PCM stack, where the first side is opposite the second side, where charge transport is decoupled by stacking the PCM layers with the pasivation layers.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Inventors: Jaeho Lee, John P. Reifenberg, Mehdi Asheghi, Kenneth E. Goodson, H.S. Philip Wong, SangBum Kim
  • Patent number: 8389119
    Abstract: A thermal interface material includes a mechanically compliant vertically aligned nanofiber film and a binder material for joining the nanofibers of the film to the surfaces of two substrates. Preferably, the binder material comprises a non-hydrocarbon-based material such as a metallic eutectic with a melting temperature below a nanofiber thermal damage threshold temperature of the film. The film is grown on a substrate which is then bonded to another substrate by the binder material in an adhesion process that may include pressure and heat. Alternatively, the film may be released from the substrate to produce a stand-alone thermal tape which may later be placed between two substrates and bonded.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: March 5, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Matthew Panzer, Kenneth E. Goodson, Xuejiao Hu, David Mann
  • Publication number: 20100314093
    Abstract: Various apparatus and methods for thermally managing a heat generating device. In one aspect, a method of thermally managing a heat generating device is provided that includes placing a heat exchanger in thermal communication with the heat generating device. The heat exchanger has an interior space. A membrane is in the interior space between a first chamber and a second chamber. The membrane has a gas impermeable portion and at least one gas permeable portion to enable vapor bubbles in the second chamber to pass through the membrane at the at least one gas permeable portion and into the first chamber. A liquid is moved through the second chamber.
    Type: Application
    Filed: June 7, 2010
    Publication date: December 16, 2010
    Inventors: Gamal Refai-Ahmed, Milnes David, Amy Marconnet, Josef Miler, Roger Flynn, Kenneth E. Goodson
  • Patent number: 7504453
    Abstract: A thermal interface material (TIM) including a mechanically compliant matrix material which contains thermally conductive particles and thermally conductive nanofibers is provided. Such a TIM provides enhanced thermal conductivity without excessive viscosity when the nanofiber volume concentration is above a threshold value for enhanced thermal conductivity.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: March 17, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Xuejiao Hu, Linan Jiang, Kenneth E. Goodson
  • Publication number: 20090068387
    Abstract: A thermal interface material includes a mechanically compliant vertically aligned nanofiber film and a binder material for joining the nanofibers of the film to the surfaces of two substrates. Preferably, the binder material comprises a non-hydrocarbon-based material such as a metallic eutectic with a melting temperature below a nanofiber thermal damage threshold temperature of the film. The film is grown on a substrate which is then bonded to another substrate by the binder material in an adhesion process that may include pressure and heat. Alternatively, the film may be released from the substrate to produce a stand-alone thermal tape which may later be placed between two substrates and bonded.
    Type: Application
    Filed: July 26, 2007
    Publication date: March 12, 2009
    Inventors: Matthew Panzer, Kenneth E. Goodson, Xuejiao Hu, David Mann
  • Patent number: 7334630
    Abstract: Apparatus and methods according to the present invention utilize micropumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These micropumps are fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These micropumps also can allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the spatial and temporal characteristics of the device temperature profiles. Novel enclosed microchannel structures are also described.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: February 26, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 7316543
    Abstract: An electroosmotic micropump having a plurality of thin, closely-spaced, approximately planar, transversel aligned partitions formed in or on a substrate, among which electroosmotic flow (EOF) is generated. Electrodes are located within enclosed inlet and outlet manifolds on either side of the partition array. Inlet and outlet ports enable fluid to be pumped into and through the micropump and through an external friction load or head. Insulating layer coatings on the formed substrate limit substrate leakage current during pumping operation.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 8, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Thomas W. Kenny, Juan G. Santiago, Daniel J. Laser, Chuan-Hua Chen
  • Patent number: 7185697
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: March 6, 2007
    Assignee: Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 7131486
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: November 7, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior Universty
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 7061104
    Abstract: In one aspect, the present invention is a technique of, and a system for conditioning power for a consuming device. In this regard, a power conditioning module, affixed to an integrated circuit device, conditions power to be applied to the integrated circuit device. The power conditioning module includes a semiconductor substrate having a first interface and a second interface wherein the first interface opposes the second interface. The power conditioning module further includes a plurality of interface vias, to provide electrical connection between the first interface and the second interface, and a first set of pads, disposed on the first interface and a second set of pads disposed on the second interface. Each of the pads is connected to a corresponding one of the interface vias on either the first or second interface. The power conditioning module also includes electrical circuitry, disposed within semiconductor substrate, to condition the power to be applied to the integrated circuit device.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: June 13, 2006
    Assignee: Cooligy, Inc.
    Inventors: Thomas William Kenny, Jr., Kenneth E. Goodson, Juan G. Santiago, George Carl Everett, Jr.
  • Patent number: 7050308
    Abstract: In one aspect, the present invention is a technique of, and a system for conditioning power for a consuming device. In this regard, a power conditioning module, affixed to an integrated circuit device, conditions power to be applied to the integrated circuit device. The power conditioning module includes a semiconductor substrate having a first interface and a second interface wherein the first interface opposes the second interface. The power conditioning module further includes a plurality of interface vias, to provide electrical connection between the first interface and the second interface, and a first set of pads, disposed on the first interface and a second set of pads disposed on the second interface. Each of the pads is connected to a corresponding one of the interface vias on either the first or second interface. The power conditioning module also includes electrical circuitry, disposed within semiconductor substrate, to condition the power to be applied to the integrated circuit device.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: May 23, 2006
    Assignee: Cooligy, Inc.
    Inventors: Thomas William Kenny, Jr., Kenneth E. Goodson, Juan G. Santiago, George Carl Everett, Jr.
  • Patent number: 7019972
    Abstract: In one aspect, the present invention is a technique of, and a system for conditioning power for a consuming device. In this regard, a power conditioning module, affixed to an integrated circuit device, conditions power to be applied to the integrated circuit device. The power conditioning module includes a semiconductor substrate having a first interface and a second interface wherein the first interface opposes the second interface. The power conditioning module further includes a plurality of interface vias, to provide electrical connection between the first interface and the second interface, and a first set of pads, disposed on the first interface and a second set of pads disposed on the second interface. Each of the pads is connected to a corresponding one of the interface vias on either the first or second interface. The power conditioning module also includes electrical circuitry, disposed within semiconductor substrate, to condition the power to be applied to the integrated circuit device.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: March 28, 2006
    Assignee: Cooligy, Inc.
    Inventors: Thomas William Kenny, Jr., Kenneth E. Goodson, Juan G. Santiago, George Carl Everett, Jr.
  • Patent number: 6991024
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: January 31, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 6942018
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Grant
    Filed: January 19, 2002
    Date of Patent: September 13, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 6882543
    Abstract: In one aspect, the present invention is a technique of, and a system for conditioning power for a consuming device. In this regard, a power conditioning module, affixed to an integrated circuit device, conditions power to be applied to the integrated circuit device. The power conditioning module includes a semiconductor substrate having a first interface and a second interface wherein the first interface opposes the second interface. The power conditioning module further includes a plurality of interface vias, to provide electrical connection between the first interface and the second interface, and a first set of pads, disposed on the first interface and a second set of pads disposed on the second interface. Each of the pads is connected to a corresponding one of the interface vias on either the first or second interface. The power conditioning module also includes electrical circuitry, disposed within semiconductor substrate, to condition the power to be applied to the integrated circuit device.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: April 19, 2005
    Assignee: Cooligy, Inc.
    Inventors: Thomas William Kenny, Jr., Kenneth E. Goodson, Juan G. Santiago, George Carl Everett, Jr.
  • Publication number: 20040252535
    Abstract: In one aspect, the present invention is a technique of, and a system for conditioning power for a consuming device. In this regard, a power conditioning module, affixed to an integrated circuit device, conditions power to be applied to the integrated circuit device. The power conditioning module includes a semiconductor substrate having a first interface and a second interface wherein the first interface opposes the second interface. The power conditioning module further includes a plurality of interface vias, to provide electrical connection between the first interface and the second interface, and a first set of pads, disposed on the first interface and a second set of pads disposed on the second interface. Each of the pads is connected to a corresponding one of the interface vias on either the first or second interface. The power conditioning module also includes electrical circuitry, disposed within semiconductor substrate, to condition the power to be applied to the integrated circuit device.
    Type: Application
    Filed: June 30, 2004
    Publication date: December 16, 2004
    Applicant: Cooligy, Inc.
    Inventors: Thomas William Kenny, Kenneth E. Goodson, Juan G. Santiago, George Carl Everett
  • Publication number: 20040240245
    Abstract: In one aspect, the present invention is a technique of, and a system for conditioning power for a consuming device. In this regard, a power conditioning module, affixed to an integrated circuit device, conditions power to be applied to the integrated circuit device. The power conditioning module includes a semiconductor substrate having a first interface and a second interface wherein the first interface opposes the second interface. The power conditioning module further includes a plurality of interface vias, to provide electrical connection between the first interface and the second interface, and a first set of pads, disposed on the first interface and a second set of pads disposed on the second interface. Each of the pads is connected to a corresponding one of the interface vias on either the first or second interface. The power conditioning module also includes electrical circuitry, disposed within semiconductor substrate, to condition the power to be applied to the integrated circuit device.
    Type: Application
    Filed: June 30, 2004
    Publication date: December 2, 2004
    Applicant: Cooligy, Inc.
    Inventors: Thomas William Kenny, Kenneth E. Goodson, Juan G. Santiago, George Carl Everett
  • Publication number: 20040241004
    Abstract: An electroosmotic micropump having a plurality of planar features formed in a substrate to form an electroosmotic flow (EOF) pumping region. Inlet and outlet manifolds on either side of the pumping region to enable fluid to be pumped into and through the micropump. A cover is bonded to the substrate to seal the pumping region and manifolds. An insulating layer coating is applied to the formed substrate to reduce current flow when an electric filed is applied during pumping operation. An additional layer is applied on top of the insulating layer to provide electrochemistry at the liquid-solid interface in the electroosmotic micropump that enhances micropump performance.
    Type: Application
    Filed: May 30, 2003
    Publication date: December 2, 2004
    Inventors: Kenneth E. Goodson, Thomas W. Kenny, Juan G. Santiago, Daniel J. Laser, Chuan-Hua Chen