Patents by Inventor Kenneth R. Clem

Kenneth R. Clem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8859835
    Abstract: In a process for the regeneration of a coked metal-containing catalyst, the coked catalyst is contacted in a regeneration zone with an atmosphere which contains carbon dioxide and carbon monoxide at a temperature of at least 400° C.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: October 14, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Kenneth R. Clem, Larry L. Iaccino, Mobae Afeworki, Juan D. Henao, Neeraj Sangar, Xiaobo Zheng, Lorenzo C. DeCaul
  • Patent number: 8841227
    Abstract: A catalyst for the conversion of methane to higher hydrocarbons including aromatic hydrocarbons comprises a support and molybdenum or a compound thereof dispersed on the support. The support comprises an aluminosilicate zeolite combined with a binder selected from silica, titania, zirconia and mixtures thereof. The catalyst is substantially free of aluminum external to the framework of the aluminosilicate zeolite.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: September 23, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Neeraj Sangar, Jocelyn A. Kowalski, Larry L. Iaccino, Kenneth R. Clem
  • Publication number: 20120083637
    Abstract: In a process for the regeneration of a coked metal-containing catalyst, the coked catalyst is contacted in a regeneration zone with an atmosphere which contains carbon dioxide and carbon monoxide at a temperature of at least 400° C.
    Type: Application
    Filed: August 26, 2011
    Publication date: April 5, 2012
    Inventors: Kenneth R. Clem, Larry L. Iaccino, Mobae Afeworki, Juan D. Henao, Neeraj Sangar, Xiaobo Zheng, Lorenzo C. DeCaul
  • Patent number: 7982080
    Abstract: In a process for converting a low carbon number aliphatic hydrocarbon to higher hydrocarbons including aromatic hydrocarbons, a feed containing the aliphatic hydrocarbon is contacted with a dehydrocyclization catalyst under conditions effective to convert the aliphatic hydrocarbon to aromatic hydrocarbons and produce an effluent stream comprising aromatic hydrocarbons and hydrogen. The dehydrocyclization catalyst comprises a metal or metal compound and a molecular sieve wherein the ratio of the amount of any Bronsted acid sites in the catalyst to the amount of said metal in the catalyst is less than 0.4 mol/mol of said metal.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: July 19, 2011
    Inventors: Teng Xu, Kenneth R. Clem, Jeremy J. Patt, J. Scott Buchanan, Larry L. Iaccino
  • Publication number: 20100331592
    Abstract: A catalyst for the conversion of methane to higher hydrocarbons including aromatic hydrocarbons comprises a support and molybdenum or a compound thereof dispersed on the support. The support comprises an aluminosilicate zeolite combined with a binder selected from silica, titania, zirconia and mixtures thereof. The catalyst is substantially free of aluminum external to the framework of the aluminosilicate zeolite.
    Type: Application
    Filed: December 22, 2008
    Publication date: December 30, 2010
    Inventors: Neeraj Sangar, Jocelyn A. Kowalski, Larry L. Iaccino, Kenneth R. Clem
  • Patent number: 7767870
    Abstract: A gas-solids reaction system with termination devices to connect a riser with one or more separation devices. The termination devices have a radius of curvature that is at least 1.0 times as great as the diameter of the conduit forming the termination device. The termination devices can be openly or closely coupled to the separation devices.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: August 3, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Rutton D. Patel, Arun K. Sharma, E. Nicholas Jones, James H. Beech, Jr., Richard E. Walter, Donald F. Shaw, Kenneth R. Clem, Nicolas P. Coute
  • Patent number: 7741528
    Abstract: This invention is to a process for separating condensed water and entrained solids from an olefin stream so that fouling of the separation equipment by the entrained solids is reduced or eliminated. The process involves injecting an antifouling agent into a water condensing or quench system in an amount to maintain a zeta potential of fouling liquid and a zeta potential of the surface of the quench system both in a positive range or both in a negative range.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: June 22, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Patricia A. O'Neill-Burn, Julia E. Steinheider, Kenneth R. Clem, Thomas H. Colle, Gerald G. McGlamery, Jr.
  • Patent number: 7687675
    Abstract: This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen N. Vaughn, Kenneth R. Clem, James H. Beech, Jr., Peter Nicholas Loezos, Richard B. Hall, Jesse Frederick Goellner
  • Patent number: 7619128
    Abstract: This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 17, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen Neil Vaughn, Kenneth R. Clem, James H. Beech, Jr., Pete N. Loezos
  • Patent number: 7594953
    Abstract: This invention is directed to a process for removing catalyst particles from a gas. The invention is particularly suited to separating particles from the gas in a vessel that has a dilute phase zone and a dense phase zone. An acoustic waveform is applied to the dilute phase zone to assist in separating small particles from the gas in the dilute phase zone.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: September 29, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Kenneth R. Clem
  • Patent number: 7589246
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane and a particulate catalytic material are supplied to a reaction zone operating under reaction conditions effective to convert at least a portion of the methane to aromatic hydrocarbons and to deposit carbonaceous material on the particulate catalytic material causing catalyst deactivation. At least a portion of the deactivated particulate catalytic material is removed from the reaction zone and is heated to a temperature of about 700° C. to about 1200° C. by direct and/or indirect contact with combustion gases produced by combustion of a supplemental fuel. The heated particulate catalytic material is then regenerated with a hydrogen-containing gas under conditions effective to convert at least a portion of the carbonaceous material thereon to methane and the regenerated catalytic particulate material is recycled back to the reaction zone.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: September 15, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Larry L. Iaccino, Teng Xu, J. Scott Buchanan, Neeraj Sangar, Jeremy J. Patt, Mark A. Nierode, Kenneth R. Clem, Mobae Afeworki
  • Patent number: 7557256
    Abstract: This invention provides methods of making molecular sieve catalyst particles, molecular sieve slurries that can be used in such methods, molecular sieve catalyst compositions and their use in catalytic hydrocarbon conversion processes. In one of its aspects, the invention provides a method of making molecular sieve catalyst particles, the method comprising the steps of: a) providing a solution or suspension of an aluminum-containing inorganic oxide precursor in a liquid medium; b) combining the solution or suspension of aluminum-containing inorganic oxide precursor with a molecular sieve, and optionally other formulating agents, to form a catalyst formulation slurry; c) aging the catalyst formulation slurry to generate in said slurry a percentage, or increase in said slurry the existing percentage, of aluminum atoms of the aluminum-containing precursor in the form of oligomers having a sharp 27 Al NMR peak at 62-63 ppm; and d) forming molecular sieve catalyst particles from the catalyst formulation slurry.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: July 7, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Kenneth R. Clem, Luc R. Martens, Weiguo Hu
  • Patent number: 7541508
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: June 2, 2009
    Assignee: ExxonMobile Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R. M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Patent number: 7511184
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a molecular sieve catalyst composition of a molecular sieve, a binder and a matrix material, wherein the weight ratio of the binder to the molecular sieve is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: March 31, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Kenneth R. Clem
  • Patent number: 7501375
    Abstract: This invention provides methods of making molecular sieve catalyst particles, molecular sieve slurries that can be used in such methods, molecular sieve catalyst compositions and their use in catalytic hydrocarbon conversion processes.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: March 10, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Kenneth R. Clem, Luc R. Martens, Weiguo Hu
  • Publication number: 20090030253
    Abstract: In a process for converting a low carbon number aliphatic hydrocarbon to higher hydrocarbons including aromatic hydrocarbons, a feed containing the aliphatic hydrocarbon is contacted with a dehydrocyclization catalyst under conditions effective to convert the aliphatic hydrocarbon to aromatic hydrocarbons and produce an effluent stream comprising aromatic hydrocarbons and hydrogen. The dehydrocyclization catalyst comprises a metal or metal compound and a molecular sieve wherein the ratio of the amount of any Bronsted acid sites in the catalyst to the amount of said metal in the catalyst is less than 0.4 mol/mol of said metal.
    Type: Application
    Filed: July 1, 2008
    Publication date: January 29, 2009
    Inventors: Teng Xu, Kenneth R. Clem, Jeremy J. Patt, J. Scott Buchanan, Larry L. Iaccino
  • Publication number: 20080269436
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Application
    Filed: December 18, 2006
    Publication date: October 30, 2008
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R.M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Publication number: 20080249342
    Abstract: In a process for converting methane to aromatic hydrocarbons, a feed containing methane and a particulate catalytic material are supplied to a reaction zone operating under reaction conditions effective to convert at least a portion of the methane to aromatic hydrocarbons and to deposit carbonaceous material on the particulate catalytic material causing catalyst deactivation. At least a portion of the deactivated particulate catalytic material is removed from the reaction zone and is heated to a temperature of about 700° C. to about 1200° C. by direct and/or indirect contact with combustion gases produced by combustion of a supplemental fuel. The heated particulate catalytic material is then regenerated with a hydrogen-containing gas under conditions effective to convert at least a portion of the carbonaceous material thereon to methane and the regenerated catalytic particulate material is recycled back to the reaction zone.
    Type: Application
    Filed: March 3, 2008
    Publication date: October 9, 2008
    Inventors: Larry L. Iaccino, Teng Xu, J. Scott Buchanan, Neeraj Sangar, Jeremy J. Patt, Mark A. Nierode, Kenneth R. Clem, Mobae Afeworki
  • Publication number: 20080188699
    Abstract: This invention is to a process for separating condensed water and entrained solids from an olefin stream so that fouling of the separation equipment by the entrained solids is reduced or eliminated. The process involves injecting an antifouling agent into a water condensing or quench system in an amount to maintain a zeta potential of fouling liquid and a zeta potential of the surface of the quench system both in a positive range or both in a negative range.
    Type: Application
    Filed: February 5, 2007
    Publication date: August 7, 2008
    Inventors: Yun-Feng Chang, Patricia A. O'Neill-Burn, Julia E. Steinheider, Kenneth R. Clem, Thomas H. Colle, Gerald G. McGlamery
  • Patent number: 7384887
    Abstract: This invention is directed to a hardened molecular sieve catalyst composition, a method of making the composition and a method of using the composition. The catalyst composition is made by mixing together molecular sieve, liquid, and an effective hardening amount of a dried molecular sieve catalyst to form a slurry. The slurry is dried, and then calcined to form the hardened molecular sieve catalyst composition. The hardened molecular sieve catalyst is highly attrition resistant.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: June 10, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Kenneth R. Clem