Patents by Inventor Kenneth R. Clem

Kenneth R. Clem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7358412
    Abstract: Disclosed is a method for making molecular sieve catalyst particles. Dried molecular sieve catalyst particles are used to make the catalyst. The dried molecular sieve catalyst particles are put into an aqueous solution and stirred to make a slurry. The slurry is dried to make the molecular sieve catalyst particles. Optionally, the dried molecular sieve catalyst particles made from the slurry are calcined.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: April 15, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Jeffery W. Sprinkle, Fran A. Shipley, Kenneth R. Clem
  • Patent number: 7355086
    Abstract: A method for maintaining the activity of silicoaluminophosphate (SAPO) molecular sieve catalyst particles during oxygenate to olefin conversion reactions. After regeneration of SAPO catalyst particles, the regenerated particles are mixed with particles having coke on their surface in a manner that maintains their catalytic activity at a predetermined level.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: April 8, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun C. Fung, Richard B. Hall, Hafedh Kochkar, Karl G. Strohmaier, Nicolas P. Coute, Kenneth R. Clem
  • Patent number: 7312369
    Abstract: This invention provides an attrition resistant metalloaluminophosphate molecular sieve catalyst composition, methods of making the catalyst composition and processes for using the catalyst composition. The metalloaluminophosphate molecular sieve catalyst composition is highly attrition resistant in dried as well as fully calcined forms.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: December 25, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Kenneth R. Clem, Luc R. Martens, Alistair D. Westwood, Jeffery W. Sprinkle
  • Patent number: 7301065
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: November 27, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R. M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Patent number: 7271123
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a molecular sieve catalyst composition of a molecular sieve, a binder and a matrix material, wherein the weight ratio of the binder to the molecular sieve is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: September 18, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Kenneth R. Clem
  • Publication number: 20070175326
    Abstract: This invention is directed to a process for removing catalyst particles from a gas. The invention is particularly suited to separating particles from the gas in a vessel that has a dilute phase zone and a dense phase zone. An acoustic waveform is applied to the dilute phase zone to assist in separating small particles from the gas in the dilute phase zone.
    Type: Application
    Filed: December 19, 2006
    Publication date: August 2, 2007
    Inventor: Kenneth R. Clem
  • Patent number: 7241713
    Abstract: This invention provides methods of making molecular sieve catalyst particles, molecular sieve slurries that can be used in such methods, molecular sieve catalyst compositions and their use in catalytic hydrocarbon conversion processes. In one of its aspects, the invention provides a method of making molecular sieve catalyst particles, the method comprising the steps of: a) providing a solution or suspension of an aluminum-containing inorganic oxide precursor in a liquid medium; b) combining the solution or suspension of aluminum-containing inorganic oxide precursor with a molecular sieve, and optionally other formulating agents, to form a catalyst formulation slurry; c) aging the catalyst formulation slurry to generate in said slurry a percentage, or increase in said slurry the existing percentage, of aluminum atoms of the aluminum-containing precursor in the form of oligomers having a sharp 27Al NMR peak at 62-63 ppm; and d) forming molecular sieve catalyst particles from the catalyst formulation slurry.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: July 10, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Kenneth R. Clem, Luc R. Martens, Weiguo Hu
  • Patent number: 7220341
    Abstract: This invention is to a process and system for controlling solids distribution in a gas-solids reactor. Solids distribution is controlled by controlling electrical charges between solid particles flowing between conductive surfaces within a gas-solids reactor. The electrical charges are controlled by conventional means such as by grounding the opposing conductive surfaces, or by applying a voltage to one of the opposing conductive surfaces.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: May 22, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jeffrey S. Smith, James Richardson Lattner, Kenneth R. Clem, Pete N. Loezos, Nicolas P. Coute, Rutton D. Patel
  • Patent number: 7214844
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a making a molecular sieve catalyst composition by forming a slurry by combining a molecular sieve, a binder and a matrix material, wherein the slurry has a pH, above or below the isoelectric point of the molecular sieve. The catalyst composition has improved attrition resistance, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: May 8, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Joseph E. Baumgartner, Stuart L. Soled, Kenneth R. Clem
  • Patent number: 7199277
    Abstract: This invention relates to processes for converting oxygenates to olefins that include a step of pretreating catalyst, which comprises molecular sieve and one or more active metal oxides of one or more metals, with a hydrocarbon composition to provide an integrated hydrocarbon co-catalyst within the molecular sieve. The combination of molecular sieve and hydrocarbon co-catalyst converts oxygenate to an olefin product with high selectivity to light olefins (i.e., ethylene or propylene, or mixture thereof).
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: April 3, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Nicolas P. Coute, Kenneth R. Clem, Doron Levin, James C. Vartuli
  • Patent number: 7160831
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: January 9, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R. M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Patent number: 7071136
    Abstract: This invention is directed to a hardened molecular sieve catalyst composition, a method of making the composition and a method of using the composition. The catalyst composition is made by mixing together molecular sieve, liquid, and an effective hardening amount of a dried molecular sieve catalyst to form a slurry. The slurry is dried, and then calcined to form the hardened molecular sieve catalyst composition. The hardened molecular sieve catalyst is highly attrition resistant.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: July 4, 2006
    Assignee: ExxonMobil Chemical Patents Inc
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Kenneth R. Clem
  • Patent number: 7033971
    Abstract: A method for maintaining the activity of silicoaluminophosphate (SAPO) molecular sieve catalyst particles during oxygenate to olefin conversion reactions. After regeneration of SAPO catalyst particles, the regenerated particles are mixed with particles having coke on their surface in a manner that maintains their catalytic activity at a predetermined level.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: April 25, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun C. Fung, Richard B. Hall, Hafedh Kochkar, Karl G. Strohmaier, Nicolas P. Coute, Kenneth R. Clem
  • Patent number: 6872680
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to a making a molecular sieve catalyst composition by forming a slurry by combining a molecular sieve, a binder and a matrix material, wherein the slurry has a pH, above or below the isoelectric point of the molecular sieve. The catalyst composition has improved attrition resistance, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: March 29, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-feng Chang, Stephen N. Vaughn, Luc R. M. Martens, Joseph E. Baumgartner, Stuart L. Soled, Kenneth R. Clem
  • Publication number: 20040266611
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Application
    Filed: July 16, 2004
    Publication date: December 30, 2004
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R.M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Patent number: 6825391
    Abstract: Disclosed is a method of rejuvenating a molecular sieve. The method includes contacting a molecular sieve having a methanol uptake of less than 1, or a catalyst containing molecular sieve having a methanol up of less than 1, with anhydrous liquid or vapor until the methanol uptake ratio is increased by at least 10%. The rejuvenated molecular sieve or catalyst can be used to make an olefin product from an oxygenate-containing feedstock. The preferred molecular sieve is a silicoaluminophosphate (SAPO) molecular sieve.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: November 30, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Marcel J. G. Janssen, Cornelius W. M. Van Oorschot, Kenneth R. Clem
  • Publication number: 20040235649
    Abstract: This invention is directed to a hardened molecular sieve catalyst composition, a method of making the composition and a method of using the composition. The catalyst composition is made by mixing together molecular sieve, liquid, and an effective hardening amount of a dried molecular sieve catalyst to form a slurry. The slurry is dried, and then calcined to form the hardened molecular sieve catalyst composition. The hardened molecular sieve catalyst is highly attrition resistant.
    Type: Application
    Filed: May 21, 2003
    Publication date: November 25, 2004
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Luc R.M. Martens, Kenneth R. Clem
  • Patent number: 6787501
    Abstract: The invention relates to a molecular sieve catalyst composition, to a method of making or forming the molecular sieve catalyst composition, and to a conversion process using the catalyst composition. In particular, the invention is directed to making a formulated molecular sieve catalyst composition from a slurry of formulation composition of a synthesized molecular sieve that has not been fully dried, a binder and an optional matrix material. In a more preferred embodiment, the weight ratio of the binder to the molecular sieve and/or the solid content of the slurry is controlled to provide an improved attrition resistant catalyst composition, particularly useful in a conversion process for producing olefin(s), preferably ethylene and/or propylene, from a feedstock, preferably an oxygenate containing feedstock.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: September 7, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen N. Vaughn, Yun-feng Chang, Luc R. M. Martens, Kenneth R. Clem, Machteld M. Mertens, Albert E. Schweizer
  • Publication number: 20040167012
    Abstract: Disclosed is a method for making molecular sieve catalyst particles. Dried molecular sieve catalyst particles are used to make the catalyst. The dried molecular sieve catalyst particles are put into an aqueous solution and stirred to make a slurry. The slurry is dried to make the molecular sieve catalyst particles. Optionally, the dried molecular sieve catalyst particles made from the slurry are calcined.
    Type: Application
    Filed: February 26, 2004
    Publication date: August 26, 2004
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Jeffery W. Sprinkle, Fran A. Shipley, Kenneth R. Clem
  • Patent number: 6710008
    Abstract: Disclosed is a method for making molecular sieve catalyst particles. Dried molecular sieve catalyst particles are used to make the catalyst. The dried molecular sieve catalyst particles are put into an aqueous solution and stirred to make a slurry. The slurry is dried to make the molecular sieve catalyst particles. Optionally, the dried molecular sieve catalyst particles made from the slurry are calcined.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: March 23, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun-Feng Chang, Stephen N. Vaughn, Jeffery W. Sprinkle, Fran A. Shipley, Kenneth R. Clem