Patents by Inventor Kenneth S. Suslick

Kenneth S. Suslick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11346829
    Abstract: The present disclosure provides methods for detection and quantification of trimethylamine (TMA) or trimethylamine oxide (TMAO) comprising passing a sample over a sensor comprising a substrate having a plurality of chemically responsive dyes selected from the following classes of chemically responsive dyes: metal-containing dyes, pH indicators, or solvatochromic/vapochromic dyes. The disclosure also provides devices and sensors for the detection and quantification of TMA, and methods of diagnosing a subject having trimethylaminuria (TMAU).
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: May 31, 2022
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Kenneth S. Suslick, Zheng Li, Maria K. LaGasse
  • Patent number: 11047836
    Abstract: In an aspect, a method for forming a microcolumn comprises steps of: (a) providing a sacrificial fiber; (b) forming a microcolumn body around said sacrificial fiber; and (c) removing said sacrificial fiber from said microcolumn body such that a hollow channel is formed within said microcolumn body via removal of said sacrificial fiber. In any embodiment of the methods disclosed herein for forming a microcolumn, said hollow channel extends through said microcolumn body and is continuous between a first end and a second end. The first end may be an inlet and the second end may be an outlet, for example, allowing for a mobile phase to enter the hollow channel via the first end and exit via the second end.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: June 29, 2021
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Kenneth S. Suslick, Jordan J. Hinman
  • Patent number: 11035800
    Abstract: A portable device for colorimetric or fluorometric analysis comprises a linear array of optically-responsive chemical sensing elements; an image sensor in optical communication with the linear array for determining a spectral response of the optically-responsive chemical sensing elements, where the image sensor comprises at least one light emission source; and electronics connected to the image sensor for analyzing spectral response data. A method of conducting colorimetric or fluorometric analysis comprises exposing a linear array of optically-responsive chemical sensing elements to a fluid comprising an analyte; impinging light on the linear array and detecting a spectral response of the chemical sensing elements; and determining an exposed color of each of the chemical sensing elements.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: June 15, 2021
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Kenneth S. Suslick, Jon R. Askim
  • Patent number: 10890569
    Abstract: A colorimetric array includes a substrate, a first spot on the substrate, and a second spot on the substrate. The first spot includes a first nanoporous pigment that includes a first nanoporous material and a first immobilized, chemoresponsive colorant. The second spot includes a second nanoporous pigment that includes a second nanoporous material and a second immobilized, chemoresponsive colorant. The first nanoporous pigment is different from the second nanoporous pigment.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: January 12, 2021
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Sung H. Lim, Christopher J. Musto, Liang Feng, Jonathan W. Kemling, Kenneth S. Suslick
  • Publication number: 20200116644
    Abstract: A portable device for colorimetric or fluorometric analysis comprises a linear array of optically-responsive chemical sensing elements; an image sensor in optical communication with the linear array for determining a spectral response of the optically-responsive chemical sensing elements, where the image sensor comprises at least one light emission source; and electronics connected to the image sensor for analyzing spectral response data. A method of conducting colorimetric or fluorometric analysis comprises exposing a linear array of optically-responsive chemical sensing elements to a fluid comprising an analyte; impinging light on the linear array and detecting a spectral response of the chemical sensing elements; and determining an exposed color of each of the chemical sensing elements.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Kenneth S. SUSLICK, Jon R. Askim
  • Patent number: 10539508
    Abstract: A portable device for colorimetric or fluorometric analysis comprises a linear array of optically-responsive chemical sensing elements; an image sensor in optical communication with the linear array for determining a spectral response of the optically-responsive chemical sensing elements, where the image sensor comprises at least one light emission source; and electronics connected to the image sensor for analyzing spectral response data. A method of conducting colorimetric or fluorometric analysis comprises exposing a linear array of optically-responsive chemical sensing elements to a fluid comprising an analyte; impinging light on the linear array and detecting a spectral response of the chemical sensing elements; and determining an exposed color of each of the chemical sensing elements.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: January 21, 2020
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Kenneth S. Suslick, Jon R. Askim
  • Publication number: 20180292364
    Abstract: In an aspect, a method for forming a microcolumn comprises steps of: (a) providing a sacrificial fiber; (b) forming a microcolumn body around said sacrificial fiber; and (c) removing said sacrificial fiber from said microcolumn body such that a hollow channel is formed within said microcolumn body via removal of said sacrificial fiber. In any embodiment of the methods disclosed herein for forming a microcolumn, said hollow channel extends through said microcolumn body and is continuous between a first end and a second end. The first end may be an inlet and the second end may be an outlet, for example, allowing for a mobile phase to enter the hollow channel via the first end and exit via the second end.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 11, 2018
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: Kenneth S. SUSLICK, Jordan J. HINMAN
  • Publication number: 20180180582
    Abstract: A colorimetric array includes a substrate, a first spot on the substrate, and a second spot on the substrate. The first spot includes a first nanoporous pigment that includes a first nanoporous material and a first immobilized, chemoresponsive colorant. The second spot includes a second nanoporous pigment that includes a second nanoporous material and a second immobilized, chemoresponsive colorant. The first nanoporous pigment is different from the second nanoporous pigment.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 28, 2018
    Inventors: Sung H. Lim, Christopher J. Musto, Liang Feng, Jonathan W. Kemling, Kenneth S. Suslick
  • Patent number: 9914106
    Abstract: A method of making silicone microspheres comprises nebulizing a silicone precursor solution comprising one or more oligomeric dimethylsiloxanes, a catalyst and a solvent into an aerosol comprising a plurality of droplets. Each droplet comprises the silicone precursor solution. The droplets are entrained in a gas which is flowed through a reaction zone comprising light energy and/or heat energy. Upon exposure of the droplets to the light energy and/or the heat energy, the solvent evaporates and the one or more oligomeric dimethylsiloxanes are polymerized. Thus, silicone microspheres are formed from the droplets of the aerosol.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: March 13, 2018
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Kenneth S. Suslick, Nitin K. Neelakantan, Jacqueline M. Rankin
  • Patent number: 9880137
    Abstract: A colorimetric array includes a substrate, a first spot on the substrate, and a second spot on the substrate. The first spot includes a first nanoporous pigment that includes a first nanoporous material and a first immobilized, chemoresponsive colorant. The second spot includes a second nanoporous pigment that includes a second nanoporous material and a second immobilized, chemoresponsive colorant. The first nanoporous pigment is different from the second nanoporous pigment.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: January 30, 2018
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Sung H. Lim, Christopher J. Musto, Liang Feng, Jonathan W. Kemling, Kenneth S. Suslick
  • Patent number: 9856446
    Abstract: The present invention is an apparatus for detecting the presence, quantity and identity of one or more microorganisms in a sample and a method for using the same. The apparatus is composed of one or more chambers and a sensing element for sensing microorganisms. In particular embodiments, the sensing element is an array of chemoresponsive dyes deposited on a substrate in a predetermined pattern combination, wherein the combination of the dyes have a distinct and direct spectroscopic, transmission, or reflectance response to distinct analytes produced by the microorganism which is indicative of the presence, quantity and identity of the microorganism.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: January 2, 2018
    Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Kenneth S. Suslick, Matthew J. Placek, William B. McNamara, III, Avijit Sen, James R. Carey, Jennifer B. Wilson, Crystal K. Keso
  • Patent number: 9855538
    Abstract: An ultrasonic apparatus for producing particles of a pharmaceutical agent or other material comprises a flow-through ultrasonic horn comprising an inlet, an outlet, and an interior channel that connects the inlet to the outlet for flow of a fluid therethrough. The ultrasonic horn is connectable to a transducer, and a crystallization tube is adjacent to the ultrasonic horn. The crystallization tube comprises an inlet port and outlet port for flow of an antisolvent therethrough, and it further includes a side access port. The outlet of the ultrasonic horn is inserted into the side access port so as to be in fluid communication with the crystallization tube.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: January 2, 2018
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Kenneth S. Suslick, Bradley W. Zeiger, Hyo Na Kim
  • Publication number: 20170336379
    Abstract: The present disclosure provides methods for detection and quantification of trimethylamine (TMA) or trimethylamine oxide (TMAO) comprising passing a sample over a sensor comprising a substrate having a plurality of chemically responsive dyes selected from the following classes of chemically responsive dyes: metal-containing dyes, pH indicators, or solvatochromic/vapochromic dyes. The disclosure also provides devices and sensors for the detection and quantification of TMA, and methods of diagnosing a subject having trimethylaminuria (TMAU).
    Type: Application
    Filed: May 17, 2017
    Publication date: November 23, 2017
    Inventors: Kenneth S. Suslick, Zheng Li, Maria K. LaGasse
  • Publication number: 20170102335
    Abstract: A portable device for colorimetric or fluorometric analysis comprises a linear array of optically-responsive chemical sensing elements; an image sensor in optical communication with the linear array for determining a spectral response of the optically-responsive chemical sensing elements, where the image sensor comprises at least one light emission source; and electronics connected to the image sensor for analyzing spectral response data. A method of conducting colorimetric or fluorometric analysis comprises exposing a linear array of optically-responsive chemical sensing elements to a fluid comprising an analyte; impinging light on the linear array and detecting a spectral response of the chemical sensing elements; and determining an exposed color of each of the chemical sensing elements.
    Type: Application
    Filed: June 9, 2015
    Publication date: April 13, 2017
    Inventors: Kenneth S. Suslick, Jon R. Askim
  • Publication number: 20160214075
    Abstract: A method of making silicone microspheres comprises nebulizing a silicone precursor solution comprising one or more oligomeric dimethylsiloxanes, a catalyst and a solvent into an aerosol comprising a plurality of droplets. Each droplet comprises the silicone precursor solution. The droplets are entrained in a gas which is flowed through a reaction zone comprising light energy and/or heat energy. Upon exposure of the droplets to the light energy and/or the heat energy, the solvent evaporates and the one or more oligomeric dimethylsiloxanes are polymerized. Thus, silicone microspheres are formed from the droplets of the aerosol.
    Type: Application
    Filed: January 22, 2016
    Publication date: July 28, 2016
    Inventors: Kenneth S. Suslick, Nitin K. Neelakantan, Jacqueline M. Rankin
  • Publication number: 20160122698
    Abstract: The present invention is an apparatus for detecting the presence, quantity and identity of one or more microorganisms in a sample and a method for using the same. The apparatus is composed of one or more chambers and a sensing element for sensing microorganisms. In particular embodiments, the sensing element is an array of chemoresponsive dyes deposited on a substrate in a predetermined pattern combination, wherein the combination of the dyes have a distinct and direct spectroscopic, transmission, or reflectance response to distinct analytes produced by the microorganism which is indicative of the presence, quantity and identity of the microorganism.
    Type: Application
    Filed: January 12, 2016
    Publication date: May 5, 2016
    Inventors: Kenneth S. Suslick, Matthew J. Placek, William B. McNamara, III, Avijit Sen, James R. Carey, Jennifer B. Wilson, Crystal K. Keso
  • Patent number: 9249446
    Abstract: The present invention is an apparatus for detecting the presence, quantity and identity of one or more microorganisms in a sample and a method for using the same. The apparatus is composed of one or more chambers and a sensing element for sensing microorganisms. In particular embodiments, the sensing element is an array of chemoresponsive dyes deposited on a substrate in a predetermined pattern combination, wherein the combination of the dyes have a distinct and direct spectroscopic, transmission, or reflectance response to distinct analytes produced by the microorganism which is indicative of the presence, quantity and identity of the microorganism.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: February 2, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Kenneth S. Suslick, Matthew J. Placek, William B. McNamara, III, Avijit Sen, James R. Carey, Jennifer B. Wilson, Crystal K. Keso
  • Publication number: 20160008782
    Abstract: An ultrasonic apparatus for producing particles of a pharmaceutical agent or other material comprises a flow-through ultrasonic horn comprising an inlet, an outlet, and an interior channel that connects the inlet to the outlet for flow of a fluid therethrough. The ultrasonic horn is connectable to a transducer, and a crystallization tube is adjacent to the ultrasonic horn. The crystallization tube comprises an inlet port and outlet port for flow of an antisolvent therethrough, and it further includes a side access port. The outlet of the ultrasonic horn is inserted into the side access port so as to be in fluid communication with the crystallization tube.
    Type: Application
    Filed: March 4, 2014
    Publication date: January 14, 2016
    Applicant: Th Board of Trustees of the University of Illinois
    Inventors: Kenneth S. Suslick, Bradley W. Zeiger, Hyo Na Kim
  • Publication number: 20150300998
    Abstract: A microcolumn for use in gas chromatography comprises a self-supporting polymer body that functions as a stationary phase and a structural support. The polymer body comprises an enclosed channel having a length L, height h and width w extending therethrough and one or more channel walls surrounding the enclosed channel. The one or more channel walls are integrally formed with the polymer body. The polymer body and the one or more channel walls may comprise a phase-separated polymer composition.
    Type: Application
    Filed: September 4, 2014
    Publication date: October 22, 2015
    Inventors: Kenneth S. Suslick, Jacqueline M. Rankin
  • Publication number: 20140370542
    Abstract: The present invention is an apparatus for detecting the presence, quantity and identity of one or more microorganisms in a sample and a method for using the same. The apparatus is composed of one or more chambers and a sensing element for sensing microorganisms. In particular embodiments, the sensing element is an array of chemoresponsive dyes deposited on a substrate in a predetermined pattern combination, wherein the combination of the dyes have a distinct and direct spectroscopic, transmission, or reflectance response to distinct analytes produced by the microorganism which is indicative of the presence, quantity and identity of the microorganism.
    Type: Application
    Filed: August 28, 2014
    Publication date: December 18, 2014
    Inventors: Kenneth S. Suslick, Matthew J. Placek, William B. McNamara, III, Avijit Sen, James R. Carey, Jennifer B. Wilson, Crystal K. Keso