Patents by Inventor Kenneth Shepard

Kenneth Shepard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190060663
    Abstract: Systems and methods for performing non-destructive sensing of a cell or tissue, in vivo or in culture, are provided. The disclosed systems and methods include fabricating and powering one or more implantable integrated circuit (IC) chips that include a network of Photovoltaic (PV) cells for energy harvesting from an optical energy source, an optical modulator integrating Quantum Dot capacitors (QD-caps) for optical data transfer using fluorescence modulation, and sensing circuitry. The IC chip disclosed herein can measure a thickness of around 10 ?m, allowing injection into small cells and diffusion through tissue, it is powered and imaged under a microscope and communicates using fluorescence modulation imaged under a microscope.
    Type: Application
    Filed: July 20, 2018
    Publication date: February 28, 2019
    Applicant: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Kenneth Shepard, Girish Ramakrishnan
  • Publication number: 20180059040
    Abstract: A method for single-molecule detection is provided and uses a carbon nanotube having a probe entity attached thereto to define a first state of the carbon nanotube. The carbon nanotube is introduced to a target entity to define a second state of the carbon nanotube. The electrical conductance of the carbon nanotube in the first and second states is compared to detect the presence of a biomolecular entity. A system for single-molecule detection including a carbon nanotube is also provided.
    Type: Application
    Filed: March 8, 2017
    Publication date: March 1, 2018
    Applicant: The Trustees Of Columbia University in the City of New York
    Inventors: Sebastian Sorgenfrei, Kenneth Shepard, Chien-Yang Chiu, Colin Nuckolls, Steven Warren
  • Patent number: 9891182
    Abstract: A method for single-molecule detection is provided and uses a carbon nanotube having a probe entity attached thereto to define a first state of the carbon nanotube. The carbon nanotube is introduced to a target entity to define a second state of the carbon nanotube. The electrical conductance of the carbon nanotube in the first and second states is compared to detect the presence of a biomolecular entity. A system for single-molecule detection including a carbon nanotube is also provided.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: February 13, 2018
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Sebastian Sorgenfrei, Kenneth Shepard, Chien-Yang Chiu, Colin Nuckolls, Steven Warren
  • Publication number: 20170350837
    Abstract: A method for single-molecule detection is provided and uses a carbon nanotube having a probe entity attached thereto to define a first state of the carbon nanotube. The carbon nanotube is introduced to a target entity to define a second state of the carbon nanotube. The electrical conductance of the carbon nanotube in the first and second states is compared to detect the presence of a biomolecular entity. A system for single-molecule detection including a carbon nanotube is also provided.
    Type: Application
    Filed: July 11, 2017
    Publication date: December 7, 2017
    Applicant: The Trustees Of Columbia University In the City of New York
    Inventors: Sebastian Sorgenfrei, Kenneth Shepard, Chien-Yang Chiu, Colin Nuckolls, Steven Warren
  • Patent number: 9810314
    Abstract: A shifter assembly for changing gears in a vehicle transmission, including a housing and a shift rod rotatably supported in the housing. The shift rod is selectively movable between a plurality of radial positions. A disc is in rotational communication with the shift rod for concurrent movement between the radial positions. The disc defines a plurality of gates each having respective first and second ends. A plurality of solenoids are disposed in the housing adjacent the disc. Each of the solenoids has a plunger selectively movable between a first position spaced from the disc and a second position disposed within one of the gates. The gates are spaced equally from each other and are radially aligned about a common reference circle. Rotation of the shift rod is selectively limited by at least one of the plungers in the second position engaging at least one of the ends of the gates.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: November 7, 2017
    Assignee: KONGSBERG DRIVELINE SYSTEMS I, INC.
    Inventors: Jeff Behounek, Thomas Blicharz, Jeffrey Dulzo, Terrentha Hill, Jonathan Love, Kenneth Shepard, Harry Edward Koontz
  • Patent number: 9704956
    Abstract: Methods of forming and resulting devices are described that include graphene devices on boron nitride. Selected methods of forming and resulting devices include graphene field effect transistors (GFETs) including boron nitride.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: July 11, 2017
    Assignee: The Trustees of Columbia University in the city of New York
    Inventors: Kenneth Shepard, Philip Kim, James C. Hone, Cory Dean
  • Patent number: 9625404
    Abstract: A method for single-molecule detection is provided and uses a carbon nanotube having a probe entity attached thereto to define a first state of the carbon nanotube. The carbon nanotube is introduced to a target entity to define a second state of the carbon nanotube. The electrical conductance of the carbon nanotube in the first and second states is compared to detect the presence of a biomolecular entity. A system for single-molecule detection including a carbon nanotube is also provided.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 18, 2017
    Assignee: The Trustees Of Columbia University In the City of New York
    Inventors: Sebastian Sorgenfrei, Kenneth Shepard, Chien-Yang Chiu, Colin Nuckolls, Steven Warren
  • Publication number: 20160245396
    Abstract: A shifter assembly for changing gears in a vehicle transmission, including a housing and a shift rod rotatably supported in the housing. The shift rod is selectively movable between a plurality of radial positions. A disc is in rotational communication with the shift rod for concurrent movement between the radial positions. The disc defines a plurality of gates each having respective first and second ends. A plurality of solenoids are disposed in the housing adjacent the disc. Each of the solenoids has a plunger selectively movable between a first position spaced from the disc and a second position disposed within one of the gates. The gates are spaced equally from each other and are radially aligned about a common reference circle. Rotation of the shift rod is selectively limited by at least one of the plungers in the second position engaging at least one of the ends of the gates.
    Type: Application
    Filed: February 25, 2015
    Publication date: August 25, 2016
    Applicant: KONGSBERG DRIVELINE SYSTEMS I, INC.
    Inventors: Jeff Behounek, Thomas Blicharz, Jeffrey Dulzo, Terrentha Hill, Jonathan Love, Kenneth Shepard, Harry Edward Koontz
  • Publication number: 20160197148
    Abstract: Methods of forming and resulting devices are described that include graphene devices on boron nitride. Selected methods of forming and resulting devices include graphene field effect transistors (GFETs) including boron nitride.
    Type: Application
    Filed: January 6, 2016
    Publication date: July 7, 2016
    Inventors: Kenneth Shepard, Philip Kim, James C. Hone, Cory Dean
  • Publication number: 20160150963
    Abstract: An apparatus and method for detecting functional cellular activity within a volume of a tissue. The method includes inserting a three-dimensional array of optical emitters and optical detectors into a volume of a tissue, where the tissue volume includes one or more cells labeled with an optical reporter of cellular activity; illuminating the one or more cells with photons from the optical emitters of the three-dimensional array to generate optical signals from the optical reporter that labels the one or more cells; and detecting the optical signals using the optical detectors of the three-dimensional array, where the illumination includes one-photon excitation of the optical reporter.
    Type: Application
    Filed: November 5, 2014
    Publication date: June 2, 2016
    Inventors: Michael Lee Roukes, Ronald James Cotton, Laurent Moreaux, Kenneth Shepard, Athanassios Siapas, Andreas Tolias
  • Patent number: 9257509
    Abstract: Methods of forming and resulting devices are described that include graphene devices on boron nitride. Selected methods of forming and resulting devices include graphene field effect transistors (GFETs) including boron nitride.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: February 9, 2016
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Kenneth Shepard, Philip Kim, James C. Hone, Cory Dean
  • Patent number: 9255912
    Abstract: An apparatus comprises a thin-film bulk acoustic resonator such as including an acoustic mirror, a piezoelectric region acoustically coupled to the acoustic mirror, and first and second conductors electrically coupled to the piezoelectric region. In an example, an integrated circuit substrate can include an interface circuit connected to the first and second conductors of the resonator, the integrated circuit substrate configured to mechanically support the resonator. An example can include an array of such resonators co-integrated with the interface circuit and configured to detect a mass change associated with one or more of a specified protein binding, a specified antibody-antigen coupling, a specified hybridization of a DNA oligomer, or an adsorption of specified gas molecules.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: February 9, 2016
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Matthew Johnston, Kenneth Shepard, Ioannis Kymissis
  • Publication number: 20140299839
    Abstract: Methods of forming and resulting devices are described that include graphene devices on boron nitride. Selected methods of forming and resulting devices include graphene field effect transistors (GFETs) including boron nitride.
    Type: Application
    Filed: December 21, 2011
    Publication date: October 9, 2014
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Kenneth Shepard, Philip Kim, James C. Hone, Cory Dean
  • Patent number: 8735209
    Abstract: An apparatus or method can include forming a graphene layer including a working surface, forming a polyvinyl alcohol (PVA) layer upon the working surface of the graphene layer, and forming a dielectric layer upon the PVA layer. In an example, the PVA layer can be activated and the dielectric layer can be deposited on an activated portion of the PVA layer. In an example, an electronic device can include such apparatus, such as included as a portion of graphene field-effect transistor (GFET), or one or more other devices.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 27, 2014
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Inanc Meric, Kenneth Shepard, Noah J. Tremblay, Philip Kim, Colin P. Nuckolls
  • Publication number: 20130285680
    Abstract: A method for single-molecule detection is provided and uses a carbon nanotube having a probe entity attached thereto to define a first state of the carbon nanotube. The carbon nanotube is introduced to a target entity to define a second state of the carbon nanotube. The electrical conductance of the carbon nanotube in the first and second states is compared to detect the presence of a biomolecular entity. A system for single-molecule detection including a carbon nanotube is also provided.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 31, 2013
    Inventors: Sebastian Sorgenfrei, Kenneth Shepard, Chien-Yang Chiu, Colin Nuckolls, Steven Warren
  • Patent number: 8445893
    Abstract: An apparatus or method can include forming a graphene layer including a working surface, forming a polyvinyl alcohol (PVA) layer upon the working surface of the graphene layer, and forming a dielectric layer upon the PVA layer. In an example, the PVA layer can be activated and the dielectric layer can be deposited on an activated portion of the PVA layer. In an example, an electronic device can include such apparatus, such as included as a portion of graphene field-effect transistor (GFET), or one or more other devices.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: May 21, 2013
    Assignee: Trustees of Columbia University in the City of New York
    Inventors: Inanc Meric, Kenneth Shepard, Noah J. Tremblay, Philip Kim, Colin P. Nuckolls
  • Patent number: 8273578
    Abstract: Use of Morpholinos, a class of uncharged DNA analogues, for surface-hybridization applications. Monolayers of Morpholino probes on gold supports are fabricated with methods similar to those employed with DNA, and are used to hybridize efficiently and sequence-specifically with target strands. Hybridization-induced changes in the interfacial charge organization are analyzed with electrochemical methods and compared for Morpholino and DNA probe monolayers. Molecular mechanisms connecting surface hybridization state to the interfacial capacitance are identified and interpreted through comparison to numerical Poisson-Boltzmann calculations. Positive as well as negative capacitive responses (contrast inversion) to hybridization are possible, depending on surface populations of mobile ions as controlled by the applied potential.
    Type: Grant
    Filed: March 18, 2012
    Date of Patent: September 25, 2012
    Inventors: Rastislav Levicky, Napoleon Tercero, Kang Wong, Ping Gong, Kenneth Shepard
  • Patent number: 8263411
    Abstract: A method to monitor the progress of hybridization between nucleic acid strands in solution and Morpholino strands immobilized on a solid support such as a working electrode in-situ, in real-time, and using label-free electrochemical measurements sensitive to hybridization-induced changes in the near-surface dielectric constant and charge organization.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: September 11, 2012
    Assignee: Polytechnic Institute of NYU
    Inventors: Rastislav Levicky, Napoleon Tercero, Kang Wang, Ping Gong, Kenneth Shepard
  • Publication number: 20120211375
    Abstract: Use of Morpholinos, a class of uncharged DNA analogues, for surface-hybridization applications. Monolayers of Morpholino probes on gold supports are fabricated with methods similar to those employed with DNA, and are used to hybridize efficiently and sequence-specifically with target strands. Hybridization-induced changes in the interfacial charge organization are analyzed with electrochemical methods and compared for Morpholino and DNA probe monolayers. Molecular mechanisms connecting surface hybridization state to the interfacial capacitance are identified and interpreted through comparison to numerical Poisson-Boltzmann calculations. Positive as well as negative capacitive responses (contrast inversion) to hybridization are possible, depending on surface populations of mobile ions as controlled by the applied potential.
    Type: Application
    Filed: March 18, 2012
    Publication date: August 23, 2012
    Applicant: Polytechnic Institute of New York University
    Inventors: Rastislav Levicky, Napoleon Tercero, Kang Wang, Ping Gong, Kenneth Shepard
  • Publication number: 20120164753
    Abstract: An apparatus comprises a thin-film bulk acoustic resonator such as including an acoustic mirror, a piezoelectric region acoustically coupled to the acoustic mirror, and first and second conductors electrically coupled to the piezoelectric region. In an example, an integrated circuit substrate can include an interface circuit connected to the first and second conductors of the resonator, the integrated circuit substrate configured to mechanically support the resonator. An example can include an array of such resonators co-integrated with the interface circuit and configured to detect a mass change associated with one or more of a specified protein binding, a specified antibody-antigen coupling, a specified hybridization of a DNA oligomer, or an adsorption of specified gas molecules.
    Type: Application
    Filed: October 28, 2011
    Publication date: June 28, 2012
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Matthew Johnston, Kenneth Shepard, Ioannis Kymissis