Patents by Inventor Kensaku Yamamoto
Kensaku Yamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20160005861Abstract: A semiconductor device is provided with: a first conductivity type contact region; a second conductivity type body region; a first conductivity type drift region of; a trench formed through the contact region and body region from a front surface of the semiconductor substrate, wherein a bottom of the trench is positioned in the drift region; an insulating film covering an inner surface of the trench; a gate electrode accommodated in the trench in a state covered with the insulating film; and a second conductivity type floating region formed at a position deeper than the bottom of the trench, and adjacent to the bottom of the trench. The floating region includes a first layer adjacent to the bottom of the trench and a second layer formed at a position deeper than the first layer, wherein a width of the first layer is broader than a width of the second layer.Type: ApplicationFiled: January 24, 2013Publication date: January 7, 2016Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATIONInventors: Shinya NISHIMURA, Narumasa SOEJIMA, Kensaku YAMAMOTO
-
Patent number: 9164119Abstract: An angular velocity detection device includes an outer frame including fixed portions, outer beam portions connected to the fixed portions, a sensing part surrounded by the outer frame with first slit therebetween, and a joint connecting the outer frame and the sensing part. The sensing part includes an inner beam portion, a flexible portion, and a detector. The inner beam portion has a hollow region inside and is square-shaped when viewed from above. The flexible portion is formed in the hollow region of the inner beam portion, and is connected to the inner edge of the inner beam portion. The detector is disposed in the flexible portion. The first slit is formed to surround the sensing part excluding the joint.Type: GrantFiled: December 5, 2012Date of Patent: October 20, 2015Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventor: Kensaku Yamamoto
-
Publication number: 20150204897Abstract: An angular velocity detection device includes an outer frame including fixed portions, outer beam portions connected to the fixed portions, a sensing part surrounded by the outer frame with first slit therebetween, and a joint connecting the outer frame and the sensing part. The sensing part includes an inner beam portion, a flexible portion, and a detector. The inner beam portion has a hollow region inside and is square-shaped when viewed from above. The flexible portion is formed in the hollow region of the inner beam portion, and is connected to the inner edge of the inner beam portion. The detector is disposed in the flexible portion. The first slit is formed to surround the sensing part excluding the joint.Type: ApplicationFiled: April 1, 2015Publication date: July 23, 2015Inventor: Kensaku Yamamoto
-
Publication number: 20150192602Abstract: An inertial force sensor that can suppress fluctuation of detection sensitivity even if an external stress is applied to the inertial force sensor. Angular velocity sensor (1), that is, an inertial force sensor includes ceramic substrate (6), lower lid (4) adhering to ceramic substrate (6) with adhesives (11a and 11b) (first adhesives), and sensor element (2) adhering to lower lid (4) with adhesives (10a and 10b) (second adhesives). The elastic moduli of adhesives (11a and 11b) are smaller than those of adhesives (10a and 10b).Type: ApplicationFiled: March 17, 2015Publication date: July 9, 2015Inventors: Shigehiro Yoshiuchi, Satoshi Ohuchi, Tsuyoshi Fujii, Kensaku Yamamoto, Hideo Ohkoshi
-
Publication number: 20150135833Abstract: An inertial force sensor includes a base, a connection electrode on the base; a flexible section supported by the base, a driving section on an upper surface of the flexible section, a detection section on the upper surface of the flexible section, an interlayer insulating layer on the upper surface of one of the driving section and the detection section, and a wiring electrically connecting another of the driving section and the detection section to a connection electrode via an upper surface of the interlayer insulating layer. This inertial force sensor can have improved sensitivity and a small size.Type: ApplicationFiled: March 5, 2013Publication date: May 21, 2015Inventors: Takami Ishida, Kensaku Yamamoto
-
Patent number: 8931514Abstract: A liquid flow rate control valve is provided in which since a total area of overlapping sections of a communication hole group (38c, 38d) of a distributor (38) and an outlet opening (37a, 37b) of a sleeve (37) changes when the distributor (38) is rotated by a first electric motor (46), if a rotor (42) is rotated by means of a second electric motor (47), an input port (31e) communicates with an output port (31f) through an inlet opening (42c, 42d) of the rotor (42), the communication hole group (38c, 38d) of the distributor (38), and the outlet opening (37a, 37b) of the sleeve (37) when the inlet opening (42c, 42d) of the rotor (42) passes through the overlapping sections, thereby making it possible to carry out PWM control of a flow rate of liquid. Since a thrust load in an axis (L) direction does not act on the distributor (38) and the rotor (42), supporting the distributor (38) and the rotor (42) becomes easy, thereby enabling the cost and weight to be cut.Type: GrantFiled: September 30, 2010Date of Patent: January 13, 2015Assignee: Honda Motor Co., Ltd.Inventors: Tsuneo Endo, Seiichiro Ishikawa, Hidemi Arai, Yuki Shibahata, Mitsuo Kadota, Hiroshi Hanabusa, Daiki Sato, Kensaku Yamamoto
-
Publication number: 20140283602Abstract: A detection element has: first and second fixed parts; first and second vertical beams each connected at first and second ends to the first and second fixed parts, respectively; a horizontal beam connected at first and second ends to centers of the first and second vertical beams, respectively; and four arms each connected at a first end to the horizontal beam and having a weight formed on a second end. The first vertical beam has a first slit formed nearer the first fixed part with respect to its center, a second slit formed nearer the second fixed part with respect to its center, and a coupling portion between these slits. The second vertical beam has a third slit formed nearer the first fixed part with respect to its center, a fourth slit formed nearer the second fixed part with respect to its center, and a coupling portion between these slits.Type: ApplicationFiled: November 16, 2012Publication date: September 25, 2014Applicant: Panasonic CorporationInventor: Kensaku Yamamoto
-
Publication number: 20140238131Abstract: An inertial force sensor that can suppress fluctuation of detection sensitivity even if an external stress is applied to the inertial force sensor. Angular velocity sensor (1), that is, an inertial force sensor includes ceramic substrate (6), lower lid (4) adhering to ceramic substrate (6) with adhesives (11a and 11b) (first adhesives), and sensor element (2) adhering to lower lid (4) with adhesives (10a and 10b) (second adhesives). The elastic moduli of adhesives (11a and 11b) are smaller than those of adhesives (10a and 10b).Type: ApplicationFiled: September 28, 2012Publication date: August 28, 2014Inventors: Shigehiro Yoshiuchi, Satoshi Ohuchi, Tsuyoshi Fujii, Kensaku Yamamoto, Hideo Ohkoshi
-
Publication number: 20140175459Abstract: A SiC semiconductor device includes: a semiconductor switching element having: a substrate, a drift layer and a base region stacked in this order; a source region and a contact region in the base region; a trench extending from a surface of the source region to penetrate the base region; a gate electrode on a gate insulating film in the trench; a source electrode electrically coupled with the source region and the base region; a drain electrode on a back side of the substrate; and multiple deep layers in an upper portion of the drift layer deeper than the trench. Each deep layer has upper and lower portions. A width of the upper portion is smaller than the lower portion.Type: ApplicationFiled: February 6, 2012Publication date: June 26, 2014Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATIONInventors: Kensaku Yamamoto, Masato Noborio, Hideo Matsuki, Hidefumi Takaya, Masahiro Sugimoto, Narumasa Soejima, Tsuyoshi Ishikawa, Yukihiko Watanabe
-
Patent number: 8612745Abstract: An authentication ticket processing apparatus includes a temporary data storage unit configured to keep user information upon receiving the user information from a user management database for managing user information, the temporary data storage unit allowing access thereto to be performed at higher speed than access to the user management database. The authentication ticket processing apparatus is configured such that, when there is a need to acquire user information in response to a decoding request from a server, a check is made whether user information corresponding to the decoding request is present in the temporary data storage unit, and the corresponding user information is acquired from the temporary data storage unit if the corresponding user information is present in the temporary data storage unit.Type: GrantFiled: November 17, 2006Date of Patent: December 17, 2013Assignee: Ricoh Company, Ltd.Inventors: Futoshi Oseto, Kensaku Yamamoto, Jun Kawada
-
Publication number: 20130239681Abstract: An angular velocity sensor includes a sensor element having a shape defined in an XYZ space, and can detect an angular velocity about a Z axis. The sensor element includes a support body extending in a direction of an X axis, an arm connected with the support body, and a weight connected with the arm. The arm has a first end connected with the support body and a second end connected with the weight. The arm has substantially a J-shape including a first arm portion extending in a direction of a Y axis from the first end to a first corner, a second arm portion extending in the direction of the X axis from the first corner to a second corner, and a third arm portion extending in the direction of the Y axis from the second corner to the second end. The length of the arm in the direction of the X axis is larger than the length of the weight in the direction of the X axis. This angular velocity sensor can improve the sensibility to angular velocity about the Z axis.Type: ApplicationFiled: December 22, 2011Publication date: September 19, 2013Applicant: PANASONIC CORPORATIONInventors: Tsuyoshi Fujii, Kensaku Yamamoto
-
Patent number: 8518809Abstract: A manufacturing method of an SiC single crystal includes preparing an SiC substrate, implanting ions into a surface portion of the SiC substrate to form an ion implantation layer, activating the ions implanted into the surface portion of the SiC substrate by annealing, chemically etching the surface portion of the SiC substrate to form an etch pit that is caused by a threading screw dislocation included in the SiC substrate and performing an epitaxial growth of SiC to form an SiC growth layer on a surface of the SiC substrate including an inner wall of the etch pit in such a manner that portions of the SiC growth layer grown on the inner wall of the etch pit join with each other.Type: GrantFiled: December 1, 2011Date of Patent: August 27, 2013Assignee: DENSO CORPORATIONInventors: Hiroki Watanabe, Yasuo Kitou, Yasushi Furukawa, Kensaku Yamamoto, Hidefumi Takaya, Masahiro Sugimoto, Yukihiko Watanabe, Narumasa Soejima, Tsuyoshi Ishikawa
-
Patent number: 8492867Abstract: A semiconductor device includes a semiconductor substrate and an electric field terminal part. The semiconductor substrate includes a substrate, a drift layer disposed on a surface of the substrate, and a base layer disposed on a surface of the drift layer. The semiconductor substrate is divided into a cell region in which a semiconductor element is disposed and a peripheral region that surrounds the cell region. The base region has a bottom face located on a same plane throughout the cell region and the peripheral region and provides an electric field relaxing layer located in the peripheral region. The electric field terminal part surrounds the cell region and a portion of the electric field relaxing layer and penetrates the electric field relaxing layer from a surface of the electric field relaxing layer to the drift layer.Type: GrantFiled: June 20, 2011Date of Patent: July 23, 2013Assignees: DENSO CORPORATION, Toyota Jidosha Kabushiki KaishaInventors: Kensaku Yamamoto, Naohiro Suzuki, Hidefumi Takaya, Masahiro Sugimoto, Jun Morimoto, Narumasa Soejima, Tsuyoshi Ishikawa, Yukihiko Watanabe
-
Patent number: 8470091Abstract: A direction of a dislocation line of a threading dislocation is aligned, and an angle between the direction of the dislocation line of the threading dislocation and a [0001]-orientation c-axis is equal to or smaller than 22.5 degrees. The threading dislocation having the dislocation line along with the [0001]-orientation c-axis is perpendicular to a direction of a dislocation line of a basal plane dislocation. Accordingly, the dislocation does not provide an extended dislocation on the c-face, so that a stacking fault is not generated. Thus, when an electric device is formed in a SiC single crystal substrate having the direction of the dislocation line of the threading dislocation, which is the [0001]-orientation c-axis, a SiC semiconductor device is obtained such that device characteristics are excellent without deterioration, and a manufacturing yield ration is improved.Type: GrantFiled: January 21, 2010Date of Patent: June 25, 2013Assignee: DENSO CORPORATIONInventors: Yasuo Kitou, Hiroki Watanabe, Masanori Nagaya, Kensaku Yamamoto, Eiichi Okuno
-
Publication number: 20120319136Abstract: A SiC device includes an inversion type MOSFET having: a substrate, a drift layer, and a base region stacked in this order; source and contact regions in upper portions of the base region; a trench penetrating the source and base regions; a gate electrode on a gate insulating film in the trench; a source electrode coupled with the source and base region; a drain electrode on a back of the substrate; and multiple deep layers in an upper portion of the drift layer deeper than the trench. Each deep layer has an impurity concentration distribution in a depth direction, and an inversion layer is provided in a portion of the deep layer on the side of the trench under application of the gate voltage.Type: ApplicationFiled: February 6, 2012Publication date: December 20, 2012Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATIONInventors: Masato Noborio, Kensaku Yamamoto, Hideo Matsuki, Hidefumi Takaya, Masahiro Sugimoto, Narumasa Soejima, Tsuyoshi Ishikawa, Yukihiko Watanabe
-
Publication number: 20120234417Abstract: A liquid flow rate control valve is provided in which since a total area of overlapping sections of a communication hole group (38c, 38d) of a distributor (38) and an outlet opening (37a, 37b) of a sleeve (37) changes when the distributor (38) is rotated by a first electric motor (46), if a rotor (42) is rotated by means of a second electric motor (47), an input port (31e) communicates with an output port (31f) through an inlet opening (42c, 42d) of the rotor (42), the communication hole group (38c, 38d) of the distributor (38), and the outlet opening (37a, 37b) of the sleeve (37) when the inlet opening (42c, 42d) of the rotor (42) passes through the overlapping sections, thereby making it possible to carry out PWM control of a flow rate of liquid. Since a thrust load in an axis (L) direction does not act on the distributor (38) and the rotor (42), supporting the distributor (38) and the rotor (42) becomes easy, thereby enabling the cost and weight to be cut.Type: ApplicationFiled: September 30, 2010Publication date: September 20, 2012Applicant: HONDA MOTOR CO., LTD.Inventors: Tsuneo Endo, Seiichiro Ishikawa, Hidemi Arai, Yuki Shibahata, Mitsuo Kadota, Hiroshi Hanabusa, Daiki Sato, Kensaku Yamamoto
-
Publication number: 20120142173Abstract: A manufacturing method of an SiC single crystal includes preparing an SiC substrate, implanting ions into a surface portion of the SiC substrate to form an ion implantation layer, activating the ions implanted into the surface portion of the SiC substrate by annealing, chemically etching the surface portion of the SiC substrate to form an etch pit that is caused by a threading screw dislocation included in the SiC substrate and performing an epitaxial growth of SiC to form an SiC growth layer on a surface of the SiC substrate including an inner wall of the etch pit in such a manner that portions of the SiC growth layer grown on the inner wall of the etch pit join with each other.Type: ApplicationFiled: December 1, 2011Publication date: June 7, 2012Applicant: DENSO CORPORATIONInventors: Hiroki WATANABE, Yasuo KITOU, Yasushi FURUKAWA, Kensaku YAMAMOTO, Hidefumi TAKAYA, Masahiro SUGIMOTO, Yukihiko WATANABE, Narumasa SOEJIMA, Tsuyoshi ISHIKAWA
-
Patent number: 8154074Abstract: A SiC semiconductor device includes: a substrate; a drift layer on a first side of the substrate; a trench in the drift layer; a base region contacting a sidewall of the trench; a source region in an upper portion of the base region; a gate electrode in the trench via a gate insulation film; a source electrode on the source region; and a drain electrode on a second side of the substrate. The source region has multi-layered structure including a first layer and a second layer. The first layer as an upper layer contacts the source electrode with ohmic contact. The second layer as a lower layer has an impurity concentration, which is lower than an impurity concentration of the first layer.Type: GrantFiled: July 7, 2009Date of Patent: April 10, 2012Assignee: DENSO CORPORATIONInventors: Kensaku Yamamoto, Takeshi Endo, Eiichi Okuno
-
Publication number: 20110309464Abstract: A semiconductor device includes a semiconductor substrate and an electric field terminal part. The semiconductor substrate includes a substrate, a drift layer disposed on a surface of the substrate, and a base layer disposed on a surface of the drift layer. The semiconductor substrate is divided into a cell region in which a semiconductor element is disposed and a peripheral region that surrounds the cell region. The base region has a bottom face located on a same plane throughout the cell region and the peripheral region and provides an electric field relaxing layer located in the peripheral region. The electric field terminal part surrounds the cell region and a portion of the electric field relaxing layer and penetrates the electric field relaxing layer from a surface of the electric field relaxing layer to the drift layer.Type: ApplicationFiled: June 20, 2011Publication date: December 22, 2011Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, DENSO CORPORATIONInventors: Kensaku YAMAMOTO, Naohiro Suzuki, Hidefumi Takaya, Masahiro Sugimoto, Jun Morimoto, Narumasa Soejima, Tsuyoshi Ishikawa, Yukihiko Watanabe
-
Publication number: 20110203513Abstract: In a method of manufacturing a silicon carbide substrate, a defect-containing substrate made of silicon carbide is prepared. The defect-containing substrate has a front surface, a rear surface being opposite to the front surface, and a surface portion adjacent to the front surface. The detect-containing substrate includes a screw dislocation in the surface portion. The front surface of the defect-containing substrate is applied with an external force so that a crystallinity of the surface portion is reduced. After being applied with the external force, the defect-containing substrate is thermally treated so that the crystallinity of the surface portion is recovered.Type: ApplicationFiled: February 17, 2011Publication date: August 25, 2011Applicants: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Hiroki WATANABE, Yasuo Kitou, Kensaku Yamamoto, Hidefumi Takaya, Masahiro Sugimoto, Jun Morimoto, Yukihiko Watanabe, Narumasa Soejima, Tsuyoshi Ishikawa