Patents by Inventor Kensuke Amemiya

Kensuke Amemiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7157716
    Abstract: The present invention provides a semiconductor radiation detector and radiation detection apparatus capable of improving energy resolution and the semiconductor radiation detection apparatus includes a semiconductor radiation detector and a signal processing circuit which processes a radiation detection signal output from the semiconductor radiation detector. The semiconductor radiation detector is provided with anode electrodes A and cathode electrodes C disposed so as to face each other with semiconductor radiation detection elements placed in-between. The semiconductor radiation detection element is made up of a single crystal of thallous bromide containing trivalent thallium (e.g., tribromobis thallium). The semiconductor radiation detector containing such a semiconductor radiation detection element reduces lattice defects in the single crystal and thereby increases charge collection efficiency.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: January 2, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Kitaguchi, Kensuke Amemiya, Kazuma Yokoi, Yuuichirou Ueno, Katsutoshi Tsuchiya, Norihito Yanagita, Shinichi Kojima, Keitaro Hitomi, Tadayoshi Shoji
  • Publication number: 20060293584
    Abstract: An X-ray CT image of a low spatial resolution image is acquired by employing a PET-X-ray CT examination apparatus. Also, a PET image is acquired by employing the PET-X-ray CT examination apparatus. Furthermore, an X-ray CT image of a high spatial resolution image is acquired by employing another X-ray CT examination apparatus. Then, the X-ray CT image equal to the low spatial resolution image is corrected by employing the X-ray CT image, so that an X-ray CT image equal to a high spatial resolution image is obtained. Since a positional relationship of the resulting X-ray CT image with respect to the PET image can be grasped, this PET image can be simply synthesized with the X-ray CT image.
    Type: Application
    Filed: August 8, 2006
    Publication date: December 28, 2006
    Inventors: Shinichi Kojima, Yuuichirou Ueno, Kensuke Amemiya, Norihito Yanagita, Hiroshi Kitaguchi, Katsutoshi Tsuchiya, Kazuma Yokoi
  • Patent number: 7154989
    Abstract: The image pickup apparatus of the radiological imaging apparatus of the present invention includes many detector units, a ring-shaped detector support member and an X-ray source circumferential transport apparatus. Each of the detector units is attached to the detector support section in a detachable manner. A plurality of radiation detectors provided for the detector units are arranged in three layers in the radius direction of the detector support member and in three columns in the axial direction of the detector support member. Since the radiation detectors are arranged in three layers in the radius direction, it is possible to recognize the detection position of radiation in the radius direction in detail. Furthermore, since the detector units are attached in a detachable manner, it is easy to replace damaged radiation detectors.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: December 26, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Yuuichirou Ueno, Hiroshi Kitaguchi, Kensuke Amemiya, Kikuo Umegaki, Norihito Yanagita, Shinichi Kojima, Kazuma Yokoi
  • Patent number: 7149565
    Abstract: An X-ray CT examination using a radiation examining apparatus corresponding to an X-ray CT is effected on an unbreathed examinee. A tomogram creating apparatus creates a first tomogram, based on an X-ray detect signal outputted from a corresponding radiation detector of the radiation examining apparatus. An X-ray CT examination and a PET examination using a radiation examining apparatus are effected on the breathed examinee. The tomogram creating apparatus creates a second tomogram, based on an X-ray detect signal outputted from a corresponding radiation detector of the radiation examining apparatus and creates a third tomogram, based on a ?-ray detect signal outputted from the corresponding radiation detector. Correction information is created based on the first and second tomograms. The third tomogram is corrected using the correction information. Therefore, the corrected third tomogram can be obtained which is not affected by a swing produced with breathing.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: December 12, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Shinichi Kojima, Kikuo Umegaki, Yuuichirou Ueno, Kensuke Amemiya, Hiroshi Kitaguchi, Takashi Okazaki, Kazuma Yokoi
  • Publication number: 20060273250
    Abstract: A processing circuit, which carries out coincidence counting, acquires calibration data so that time delays of ?-ray detection signals from radiation detectors coincide with one another. A technique for acquiring calibration data faster and easily is provided to attain high time precision and respond to multi-channeling of detectors. A signal from a test signal generator is sent to signal processing apparatuses and coincidence count events are generated as a test. The events generated are processed by a delay time control apparatus and a variable delay circuit is controlled to improve the accuracy of coincidence counting.
    Type: Application
    Filed: August 14, 2006
    Publication date: December 7, 2006
    Inventors: Takafumi Ishitsu, Kensuke Amemiya, Yuuichirou Ueno, Takashi Matsumoto, Takashi Matsumoto
  • Patent number: 7141797
    Abstract: A practical semiconductor radiation detector capable of collecting electrons rapidly with a large volume is disclosed. A multiple layers of grid electrodes around an anode formed on a semiconductor element limits the generation of the induced charge signal for the anode to the space in the neighborhood of the anode, while at the same time making it possible to collect the electrons rapidly. As a result of limiting the space for generating the induced charge by the grid electrodes, the energy resolution is improved even for a thick semiconductor element. Also, the capability of rapidly collecting the electrons due to the high field strength generated by the grid electrodes makes a sensitive volume of the whole semiconductor and thus achieves a high radiation detection efficiency.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: November 28, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Kazuma Yokoi, Hiroshi Kitaguchi, Kikuo Umegaki, Kensuke Amemiya, Yuuichirou Ueno, Norihito Yanagita, Shinichi Kojima
  • Publication number: 20060261281
    Abstract: In a gamma camera, a plurality of radiation detector elements having a rod-shaped first electrode, a semiconductor device surrounds the first electrode to contact with it for entering a radiation, and a second electrode provided for the side surface of the semiconductor device are detachably attached to a holding member. The holding member has a first electrode contact portion contacted with the first electrode and a second electrode contact portion contacted with the second electrode. A collimator in which a plurality of radiation paths provided corresponding to the plurality of radiation detector elements are formed is arranged on the radiation entering side of the plurality of radiation detector elements. A ?-ray detection signal outputted from the first electrode contact portion is sent to a signal processing integrated circuit. A high voltage is applied to the second electrode via the second electrode contact portion.
    Type: Application
    Filed: July 24, 2006
    Publication date: November 23, 2006
    Inventors: Katsutoshi Tsuchiya, Hiroshi Kitaguchi, Kazuma Yokoi, Kikuo Umegaki, Kensuke Amemiya, Yuuichirou Ueno, Norihito Yanagita, Shinichi Kojima
  • Publication number: 20060243915
    Abstract: Each semiconductor radiation detector used for a nuclear medicine diagnostic apparatus (PET apparatus) is constructed with an anode electrode A facing a cathode electrode C sandwiching a CdTe semiconductor member S which generates charge through interaction with ?-rays. Then, a thickness t of the semiconductor member S sandwiched between these mutually facing anode electrode A and cathode electrode C is set to 0.2 to 2 mm. Furthermore, the devices are mounted (laid out) on substrates in such a way that the distance (distance of conductor) between the semiconductor radiation detector and an analog ASIC which processes the signal detected by this detector is shortened. Furthermore, the substrates on which the detectors are mounted are housed in a housing as a unit (detector unit).
    Type: Application
    Filed: May 17, 2006
    Publication date: November 2, 2006
    Inventors: Kensuke Amemiya, Yuuichirou Ueno, Hiroshi Kitaguchi, Osamu Yokomizo, Shinichi Kojima, Katsutoshi Tsuchiya, Norihito Yanagita, Kazuma Yokoi
  • Patent number: 7129476
    Abstract: A processing circuit, which carries out coincidence counting, acquires calibration data so that time delays of ?-ray detection signals from radiation detectors coincide with one another. A technique for acquiring calibration data faster and easily is provided to attain high time precision and respond to multi-channeling of detectors. A signal from a test signal generator is sent to signal processing apparatuses and coincidence count events are generated as a test. The events generated are processed by a delay time control apparatus and a variable delay circuit is controlled to improve the accuracy of coincidence counting.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: October 31, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Takafumi Ishitsu, Kensuke Amemiya, Yuuichirou Ueno, Takashi Matsumoto, Takashi Matsumoto
  • Publication number: 20060241386
    Abstract: A radiological imaging apparatus which can keep detectors at a low temperature, improve a time resolution and an energy resolution and perform an accurate diagnosis is provided. In the radiological imaging apparatus, an imaging apparatus imaging a testing subject supported by a bed couples a detector board having placed thereon radiation detectors detecting radiations emitted from the testing subject and a signal processing board having placed thereon a signal processing circuit processing detection signals of the radiation detectors via an intermediate board by connectors, and separates a detector space including the radiation detectors and a signal processing circuit space including the signal processing circuit.
    Type: Application
    Filed: February 17, 2006
    Publication date: October 26, 2006
    Inventors: Norihito Yanagita, Tsutomu Imai, Takashi Matsumoto, Kensuke Amemiya, Yuuichirou Ueno, Tomoyuki Seino
  • Patent number: 7127026
    Abstract: A radiological imaging apparatus of the present invention includes an X-ray source for emitting an X-ray, a ?-ray detecting section for outputting a detection signal of a ?-ray, and an X-ray detecting section for outputting a detecting signal of an X-ray. The X-ray source moves around a bed for placing an examinee. The ?-ray detecting section has a plurality of radiation detectors aligned in the longitudinal direction of the bed and placed around the bed. The X-ray detecting section is positioned in a region formed between one end and the other end of the ?-ray detecting section in the longitudinal direction of the bed. The X-ray source is also positioned in the region. Since the X-ray detecting section is placed in the region, it is possible to accurately combine a PET image and an X-ray computed tomographic image.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: October 24, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Kensuke Amemiya, Yuuichirou Ueno, Hiroshi Kitaguchi, Kikuo Umegaki, Shinichi Kojima, Norihito Yanagida, Kazuma Yokoi, Takashi Okazaki
  • Patent number: 7119340
    Abstract: In a gamma camera, a plurality of radiation detector elements having a rod-shaped first electrode, a semiconductor device surrounds the first electrode to contact with it for entering a radiation, and a second electrode provided for the side surface of the semiconductor device are detachably attached to a holding member. The holding member has a first electrode contact portion contacted with the first electrode and a second electrode contact portion contacted with the second electrode. A collimator in which a plurality of radiation paths provided corresponding to the plurality of radiation detector elements are formed is arranged on the radiation entering side of the plurality of radiation detector elements. A ?-ray detection signal outputted from the first electrode contact portion is sent to a signal processing integrated circuit. A high voltage is applied to the second electrode via the second electrode contact portion.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: October 10, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Katsutoshi Tsuchiya, Hiroshi Kitaguchi, Kazuma Yokoi, Kikuo Umegaki, Kensuke Amemiya, Yuuichirou Ueno, Norihito Yanagita, Shinichi Kojima
  • Patent number: 7115877
    Abstract: In a gamma camera, a plurality of radiation detector elements having a rod-shaped first electrode, a semiconductor device surrounds the first electrode to contact with it for entering a radiation, and a second electrode provided for the side surface of the semiconductor device are detachably attached to a holding member. The holding member has a first electrode contact portion contacted with the first electrode and a second electrode contact portion contacted with the second electrode. A collimator in which a plurality of radiation paths provided corresponding to the plurality of radiation detector elements are formed is arranged on the radiation entering side of the plurality of radiation detector elements. A ?-ray detection signal outputted from the first electrode contact portion is sent to a signal processing integrated circuit. A high voltage is applied to the second electrode via the second electrode contact portion.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: October 3, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Katsutoshi Tsuchiya, Hiroshi Kitaguchi, Kazuma Yokoi, Kikuo Umegaki, Kensuke Amemiya, Yuuichirou Ueno, Norihito Yanagita, Shinichi Kojima
  • Publication number: 20060214110
    Abstract: A radiological imaging apparatus of the present invention comprises an image pickup device and a medical examinee holding device that is provided with a bed. The image pickup device includes a large number of radiation detectors and radiation detector support plates. A large number of radiation detectors are mounted around the circumference of a through-hole and arranged in the axial direction of the through-hole. The radiation detectors are arranged in three layers formed radially with respect to the center of the through-hole and mounted on the lateral surfaces of the radiation detector support plates. Since the radiation detectors are not only arranged in the axial direction and circumferential direction of the through-hole but also arrayed in the radial direction, it is possible to obtain accurate information about a ?-ray arrival position in the radial direction of the through-hole (the positional information about a radiation detector from which a ?-ray image pickup signal is output).
    Type: Application
    Filed: March 15, 2006
    Publication date: September 28, 2006
    Inventors: Shinichi Kojima, Takashi Okazaki, Yuuichirou Ueno, Kikuo Umegaki, Kensuke Amemiya, Kazuhiro Takeuchi, Hiroshi Kitaguchi, Kazuma Yokoi, Norihito Yanagita
  • Publication number: 20060192127
    Abstract: A ?-ray signal processing section 60? determines a detection time of a ? ray based on a ?-ray detection signal outputted from a semiconductor radiation detector for detecting the ? ray, and determines the energy of the ? ray. Then, a time correction circuit 70 obtains, based on the energy of the ? ray, a detection value of the detection time that corresponds to the energy of the ? ray from a time correction table indicating the relationship between the energy of the ? ray and the correction value of the detection time of the ? ray, and corrects the detection time according to the obtained correction value of the detection time. Coincidence counting is performed on the ? ray in a coincidence counting circuit 80 based on the corrected detection time.
    Type: Application
    Filed: April 18, 2006
    Publication date: August 31, 2006
    Inventors: Norihito Yanagita, Yuuichirou Ueno, Kensuke Amemiya, Hiroshi Kitaguchi, Katsutoshi Tsuchiya, Shinichi Kojima, Kazuma Yokoi, Takafumi Ishitsu
  • Publication number: 20060186341
    Abstract: A positron emission tomography apparatus installs a plurality of detector units in the circumference of a bed. The detector unit installs a plurality of combined substrates including detectors, analogue ASICs, and a digital ASIC and a voltage adjustment device inside a housing. A partition plate installed inside the housing separates the region inside the housing into a first region installed with the combined substrates and a second region installed with the voltage adjustment device. The partition plate blocks noise generated in the voltage adjustment device so as not to affect ?-ray detection signals outputted from the detectors, thereby preventing the effect of the noise generated in the voltage adjustment device toward ?-ray detection signals and shortening the examination time.
    Type: Application
    Filed: February 16, 2006
    Publication date: August 24, 2006
    Inventors: Yuuichirou Ueno, Kensuke Amemiya, Norihito Yanagita, Takafumi Ishitsu, Tomoyuki Seino, Takashi Matsumoto, Shinobu Irikura
  • Publication number: 20060188059
    Abstract: A radiological imaging apparatus of the present invention includes an X-ray source for emitting an X-ray, a ?-ray detecting section for outputting a detection signal of a ?-ray, and an X-ray detecting section for outputting a detecting signal of an X-ray. The X-ray source moves around a bed for placing an examinee. The ?-ray detecting section has a plurality of radiation detectors aligned in the longitudinal direction of the bed and placed around the bed. The X-ray detecting section is positioned in a region formed between one end and the other end of the ?-ray detecting section in the longitudinal direction of the bed. The X-ray source is also positioned in the region. Since the X-ray detecting section is placed in the region, it is possible to accurately combine a PET image and an X-ray computed tomographic image.
    Type: Application
    Filed: April 25, 2006
    Publication date: August 24, 2006
    Inventors: Kensuke Amemiya, Yuuichirou Ueno, Hiroshi Kitaguchi, Kikuo Umegaki, Shinichi Kojima, Norihito Yanagida, Kazuma Yokoi, Takashi Okazaki
  • Publication number: 20060175552
    Abstract: In a radiological inspection apparatus, a subject lying on a bed is located in the center of an imaging device. A large number of radiological detectors are arranged around the subject. The radiological detectors are arranged in multiple stages in a direction normal to the body axis of the subject. The radiological detectors are sequentially arranged in three stages in a direction away from the subject. A large number of combinations each of the three radiological detectors are installed like a ring so as to surround the subject. If circuits in the radiological detectors detect a plurality of signals considered to be coincident, the system selects one of the radiological detectors which is closer to the subject depending on the energy of radiation.
    Type: Application
    Filed: February 3, 2006
    Publication date: August 10, 2006
    Inventors: Shinichi Kojima, Yuuichirou Ueno, Keiji Kobashi, Takafumi Ishitsu, Kensuke Amemiya
  • Publication number: 20060153339
    Abstract: The image pickup apparatus of the radiological imaging apparatus of the present invention includes many detector units, a ring-shaped detector support member and an X-ray source circumferential transport apparatus. Each of the detector units is attached to the detector support section in a detachable manner. A plurality of radiation detectors provided for the detector units are arranged in three layers in the radius direction of the detector support member and in three columns in the axial direction of the detector support member. Since the radiation detectors are arranged in three layers in the radius direction, it is possible to recognize the detection position of radiation in the radius direction in detail. Furthermore, since the detector units are attached in a detachable manner, it is easy to replace damaged radiation detectors.
    Type: Application
    Filed: March 9, 2006
    Publication date: July 13, 2006
    Inventors: Yuuichirou Ueno, Hiroshi Kitaguchi, Kensuke Amemiya, Kikuo Umegaki, Norihito Yanagita, Shinichi Kojima, Kazuma Yokoi
  • Patent number: 7053376
    Abstract: A radiological imaging apparatus of the present invention includes an X-ray source for emitting an X-ray, a ?-ray detecting section for outputting a detection signal of a ?-ray, and an X-ray detecting section for outputting a detecting signal of an X-ray. The X-ray source moves around a bed for placing an examinee. The ?-ray detecting section has a plurality of radiation detectors aligned in the longitudinal direction of the bed and placed around the bed. The X-ray detecting section is positioned in a region formed between one end and the other end of the ?-ray detecting section in the longitudinal direction of the bed. The X-ray source is also positioned in the region. Since the X-ray detecting section is placed in the region, it is possible to accurately combine a PET image and an X-ray computed tomographic image.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: May 30, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Kensuke Amemiya, Yuuichirou Ueno, Hiroshi Kitaguchi, Kikuo Umegaki, Shinichi Kojima, Norihito Yanagida, Kazuma Yokoi, Takashi Okazaki