Patents by Inventor Kenta Imai

Kenta Imai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190204346
    Abstract: In order to aspire to higher sensitivity in an automatic analysis device, it is important to prevent the mixing of dust and the like in a reaction part in which a sample and a reagent react. The present invention presents an automatic analysis device that is provided with a configuration for making the pressure inside a specific block in the device such as a reaction part, or inside the device become positive. By making the pressure become positive and forming an air flow that flows out from the inside of the reaction part or the device, it is possible to limit, to a certain amount or less, the amount of dust penetrating into the reaction part.
    Type: Application
    Filed: August 4, 2017
    Publication date: July 4, 2019
    Inventors: Daisuke EBIHARA, Kenta IMAI, Yoshihiro YAMASHITA, Shigeki MATSUBARA, Taku SAKAZUME
  • Patent number: 10302641
    Abstract: An analyzing device of the present invention is provided with a flow chamber that a fluid including magnetic particles associated with a labeling substance flows from a fluid inlet to a fluid outlet, magnetic trap means to apply a magnetic field for trapping the magnetic particles to the fluid in the flow chamber, a working electrode and a counter electrode to apply a voltage to the magnetic particles trapped by the magnetic trap means, and to emit a luminescence, a light detection element to detect a luminescence derived from the labeling substance on the magnetic particles trapped in the flow chamber, and regulating means to regulate a region that the light detection element detects the luminescence derived from the labeling substance on a part of magnetic particles of them trapped by the magnetic trap means.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: May 28, 2019
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Shunichiro Nobuki, Muneo Maeshima, Terumi Tamura, Kenta Imai
  • Publication number: 20180246133
    Abstract: In conventional automatic analyzers, there have been instances where, when a plurality of associated items are analyzed as a set item, there is high variation in the analysis data obtained using the set item, leading to a need for improvement of analysis precision. The present invention comprises performing, in mutual association, a set of preparation steps to carry out until it is time to analyze an unknown sample, the set of preparation steps including a pre-preparation step in which stirring, etc., is performed when an analysis reagent kit is mounted on the analyzer, and a step for correcting a standard curve in which correction samples that correspond to analysis items are used. This makes it possible to perform analysis after the preparation states of a plurality of analysis reagent kits are collected as needed, enabling high-precision analysis of a set item.
    Type: Application
    Filed: July 1, 2016
    Publication date: August 30, 2018
    Inventors: Kenta IMAI, Toshiharu SUZUKI, Shigeki MATSUBARA, Takayuki SUGIME, Shunsuke SASAKI, Elke FAATZ, Beatus OFENLOCH-HAEHNLE
  • Publication number: 20180224474
    Abstract: The purpose of the present invention is to attain an automated analyzer that keeps the costs required for inspection to a minimum and is capable of starting measurement immediately after being turned on.
    Type: Application
    Filed: July 25, 2016
    Publication date: August 9, 2018
    Inventors: Shunsuke SASAKI, Kenta IMAI, Toshiharu SUZUKI, Katsuhiko SAKAMOTO
  • Publication number: 20180188181
    Abstract: A highly reflective light-guide system has a highly reflective light-guide surface for reflecting light that has been emitted from a sample and has entered from an entry port opposing a window material and propagating the same to an exit port opposing a light reception surface of a photodetector. An optical filter is provided in a space surrounded by the window material, the photodetector, and the highly reflective light-guide system and transmits the signal luminescence to be measured that is emitted from the sample between the window material and photodetector. The optical filter is fixed to the window material or photodetector by an adhesive, and the peripheral shape of the optical filter is smaller than the shape of the inside of a fitting part to which the optical filter is fitted and that is formed on the highly reflective light-guide system.
    Type: Application
    Filed: July 13, 2016
    Publication date: July 5, 2018
    Inventors: Shunichiro NOBUKI, Muneo MAESHIMA, Kenta IMAI
  • Publication number: 20180011121
    Abstract: Provided are an automated analyzer for analyzing a substance contained in an unknown sample and a liquid reservoir, the analyzer and the reservoir being capable of saving users' operation without remarkably increasing the number of components. A flow path outlet of an overflow portion of the liquid reservoirs projects closer to the inner circumferential side of a drain flow path than to an inner circumferential surface side of an outer wall of the drain flow path serving as a destination to which liquid overflows. In addition, the flow path outlet projects so as to come into contact with an outer wall of the inner pipe. The flow path outlet of the overflow portion projects into the drain flow path so as to be located below an upper end of the outer wall of the drain flow path.
    Type: Application
    Filed: January 7, 2016
    Publication date: January 11, 2018
    Inventors: Reika KURODA, Kenta IMAI, Yukinori SAKASHITA, Yoshihiro YAMASHITA
  • Patent number: 9829458
    Abstract: Provided are an electrode, an electrolysis cell, and an electrochemical analyzer that improve the long-term stability of analysis data. A working electrode, a counter electrode, and reference electrode are disposed in an electrolysis cell. The working electrode is obtained by forming a lead wire in a composite material having platinum or a platinum alloy as a base material, in which a metal oxide is dispersed, or in a laminated material obtained by laminating a valve metal and platinum such that the cross sectional crystal texture in the thickness direction of the platinum is formed in layers and the thickness of each layer of the platinum is 5 micrometers or less. The metal oxide is selected from among zirconium oxide, tantalum oxide, and niobium oxide, and the metal oxide content of the platinum or the platinum alloy is 0.005 to 1 wt % in terms of the zirconium, tantalum, or niobium metal.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: November 28, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroshi Kanemoto, Hauro Akahoshi, So Oguchi, Kenta Imai, Taku Sakazume, Hiroshi Yoshida
  • Patent number: 9759681
    Abstract: The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 12, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiro Saito, Kenta Imai, Kyoko Imai, Kazumichi Imai, Itaru Yanagi, Yoshimitsu Yanagawa, Masahiko Ando, Naoshi Itabashi
  • Publication number: 20160334428
    Abstract: When a sample of biological origin in an aqueous solution is used as the measurement medium in analysis using an electrochemical process, and a voltage of +1.2 V or greater (with saturated silver-silver chloride electrode potential as a reference) is applied, there are instances in which bubbles are observed to be produced within the flow cell, due to an electrolysis reaction deriving from the measurement buffer. There is a possibility that bubbles produced on the electrode will cover the electrode surface, reducing the effective surface area of the electrode. Also, the distribution of magnetic particles captured on the electrode will be disturbed by the gas produced thereby, lowering the reproducibility of the results of the analysis. Deaeration of the measurement medium prior to introduction of the measurement medium into the detector minimizes the effects of bubble production in degrading the analytical capability makes it possible to carry out highly sensitive electrochemical analysis.
    Type: Application
    Filed: January 9, 2015
    Publication date: November 17, 2016
    Inventors: Kenta IMAI, Yoshinori NEGISHI, Toshinari SAKURAI, Kyoko IMAI
  • Publication number: 20160077035
    Abstract: Provided are an electrode, an electrolysis cell, and an electrochemical analyzer that improve the long-term stability of analysis data. A working electrode, a counter electrode, and reference electrode are disposed in an electrolysis cell. The working electrode is obtained by forming a lead wire in a composite material having platinum or a platinum alloy as a base material, in which a metal oxide is dispersed, or in a laminated material obtained by laminating a valve metal and platinum such that the cross sectional crystal texture in the thickness direction of the platinum is formed in layers and the thickness of each layer of the platinum is 5 micrometers or less. The metal oxide is selected from among zirconium oxide, tantalum oxide, and niobium oxide, and the metal oxide content of the platinum or the platinum alloy is 0.005 to 1 wt % in terms of the zirconium, tantalum, or niobium metal.
    Type: Application
    Filed: December 1, 2015
    Publication date: March 17, 2016
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Hiroshi KANEMOTO, Hauro AKAHOSHI, So OGUCHI, Kenta IMAI, Taku SAKAZUME, Hiroshi YOSHIDA
  • Publication number: 20160061831
    Abstract: An analyzing device of the present invention is provided with a flow chamber that a fluid including magnetic particles associated with a labeling substance flows from a fluid inlet to a fluid outlet, magnetic trap means to apply a magnetic field for trapping the magnetic particles to the fluid in the flow chamber, a working electrode and a counter electrode to apply a voltage to the magnetic particles trapped by the magnetic trap means, and to emit a luminescence, a light detection element to detect a luminescence derived from the labeling substance on the magnetic particles trapped in the flow chamber, and regulating means to regulate a region that the light detection element detects the luminescence derived from the labeling substance on a part of magnetic particles of them trapped by the magnetic trap means.
    Type: Application
    Filed: January 23, 2014
    Publication date: March 3, 2016
    Applicant: Roche Diagnostics Operations, Inc.
    Inventors: Shunichiro Nobuki, Muneo Maeshima, Terumi Tamura, Kenta Imai
  • Patent number: 9234861
    Abstract: Provided are an electrode, an electrolysis cell, and an electrochemical analyzer that improve the long-term stability of analysis data. A working electrode, a counter electrode, and reference electrode are disposed in an electrolysis cell. The working electrode is obtained by forming a lead wire in a composite material having platinum or a platinum alloy as a base material, in which a metal oxide is dispersed, or in a laminated material obtained by laminating a valve metal and platinum such that the cross sectional crystal texture in the thickness direction of the platinum is formed in layers and the thickness of each layer of the platinum is 5 micrometers or less. The metal oxide is selected from among zirconium oxide, tantalum oxide, and niobium oxide, and the metal oxide content of the platinum or the platinum alloy is 0.005 to 1 wt % in terms of the zirconium, tantalum, or niobium metal.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: January 12, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroshi Kanemoto, Haruo Akahoshi, So Oguchi, Kenta Imai, Taku Sakazume, Hiroshi Yoshida
  • Publication number: 20150308977
    Abstract: The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 29, 2015
    Inventors: Toshiro Saito, Kenta Imai, Kyoko Imai, Kazumichi Imai, Itaru Yanagi, Yoshimitsu Yanagawa, Masahiko Ando, Naoshi Itabashi
  • Publication number: 20130248378
    Abstract: Provided are an electrode, an electrolysis cell, and an electrochemical analyzer that improve the long-term stability of analysis data. A working electrode, a counter electrode, and reference electrode are disposed in an electrolysis cell. The working electrode is obtained by forming a lead wire in a composite material having platinum or a platinum alloy as a base material, in which a metal oxide is dispersed, or in a laminated material obtained by laminating a valve metal and platinum such that the cross sectional crystal texture in the thickness direction of the platinum is formed in layers and the thickness of each layer of the platinum is 5 micrometers or less. The metal oxide is selected from among zirconium oxide, tantalum oxide, and niobium oxide, and the metal oxide content of the platinum or the platinum alloy is 0.005 to 1 wt % in terms of the zirconium, tantalum, or niobium metal.
    Type: Application
    Filed: December 6, 2011
    Publication date: September 26, 2013
    Inventors: Hiroshi Kanemoto, Haruo Akahoshi, So Oguchi, Kenta Imai, Taku Sakazume, Hiroshi Yoshida