Patents by Inventor Ker-Hsiao Huo

Ker-Hsiao Huo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170271511
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Application
    Filed: June 5, 2017
    Publication date: September 21, 2017
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun Lin Tsai
  • Publication number: 20170229575
    Abstract: A semiconductor structure is disclosed. The semiconductor structure includes: a substrate of a first conductivity; a first region of the first conductivity formed in the substrate; a second region of the first conductivity formed in the first region, wherein the second region has a higher doping density than the first region; a source region of a second conductivity formed in the second region; a drain region of the second conductivity formed in the substrate; a pickup region of the first conductivity formed in the second region and adjacent to the source region; and a resist protective oxide (RPO) layer formed on a top surface of the second region. An associated fabricating method is also disclosed.
    Type: Application
    Filed: February 5, 2016
    Publication date: August 10, 2017
    Inventors: CHEN-LIANG CHU, TA-YUAN KUNG, KER-HSIAO HUO, YI-HUAN CHEN
  • Publication number: 20170194320
    Abstract: A method includes forming an isolation region extending into a semiconductor substrate, etching a top portion of the isolation region to form a recess in the isolation region, and forming a gate stack extending into the recess and overlapping a lower portion of the isolation region. A source region and a drain region are formed on opposite sides of the gate stack. The gate stack, the source region, and the drain region are parts of a Metal-Oxide-Semiconductor (MOS) device.
    Type: Application
    Filed: March 4, 2016
    Publication date: July 6, 2017
    Inventors: Yi-huan Chen, Kong-Beng Thei, Fu-Jier Fan, Ker-Hsiao Huo, Kau-Chu Lin, Li-Hsuan Yeh, Szu-Hsien Liu, Yi-Sheng Chen
  • Publication number: 20170170311
    Abstract: A semiconductor device is provided. The semiconductor device comprises a substrate, a gate, a first doped region and a second doped region. The gate is over the substrate. The first doped region and the second doped region are in the substrate. The first doped region and the second doped region are of a same conductivity type and separated by the gate. The length of the first doped region is greater than a length of the second doped region in a direction substantially perpendicular to a channel length defined between the first doped region and the second doped region.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 15, 2017
    Inventors: KER-HSIAO HUO, KONG-BENG THEI, CHIEN-CHIH CHOU, YI-MIN CHEN, CHEN-LIANG CHU
  • Patent number: 9673323
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: June 6, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Patent number: 9660108
    Abstract: A device includes a p-well region, and a first High-Voltage N-type Well (HVNW) region and a second HVNW region contacting opposite edges of the p-well region. A P-type Buried Layer (PBL) has opposite edges in contact with the first HVNW region and the second HVNW region. An n-type buried well region is underlying the PBL. The p-well region and the n-type buried well region are in contact with a top surface and a bottom surface, respectively, of the PBL. The device further includes a n-well region in a top portion of the p-well region, an n-type source region in the n-well region, a gate stack overlapping a portion of the p-well region and a portion of the second HVNW region, and a channel region under the gate stack. The channel region interconnects the n-well region and the second HVNW region.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker-Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun Lin Tsai
  • Publication number: 20160308036
    Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), and more particularly an insulated gate bipolar junction transistor (IGBT), is disclosed. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Application
    Filed: June 24, 2016
    Publication date: October 20, 2016
    Inventors: Ker-Hsiao Huo, Fu-Chih Yang, Jen-Hao Yeh, Chun Lin Tsai, Chih-Chang Cheng, Ru-Yi Su
  • Publication number: 20160260704
    Abstract: A high voltage semiconductor device includes: a source having a first conductivity type and a drain having the first conductivity type disposed in a substrate; a first dielectric component disposed on a surface of the substrate between the source and the drain; a drift region disposed in the substrate, wherein the drift region has the first conductivity type; a first doped region having a second conductivity type and disposed within the drift region under the dielectric component, the second conductivity type being opposite the first conductivity type; a second doped region having the second conductivity type and disposed within the drift region, wherein the second doped region at least partially surrounds one of the source and the drain; a resistor disposed directly on the dielectric component; and a gate disposed directly on the dielectric component, wherein the gate is electrically coupled to the resistor.
    Type: Application
    Filed: March 4, 2015
    Publication date: September 8, 2016
    Inventors: Ker-Hsiao Huo, Hsin-Chih Chiang, Kevin Chen, Chun Lin Tsai, Yi-Min Chen
  • Patent number: 9391195
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes: a drift region having a first doping polarity formed in a substrate; a doped extension region formed in the drift region and having a second doping polarity opposite the first doping polarity, the doped extension region including a laterally-extending component; a dielectric structure formed over the drift region, the dielectric structure being separated from the doped extension region by a portion of the drift region; a gate structure formed over a portion of the dielectric structure and a portion of the doped extension region; and a doped isolation region having the second doping polarity, the doped isolation region at least partially surrounding the drift region and the doped extension region.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: July 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Ker Hsiao Huo, Chih-Chang Cheng, Ruey-Hsin Liu
  • Patent number: 9379188
    Abstract: A method of making a high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), is disclosed. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: June 28, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker-Hsiao Huo, Chih-Chang Cheng, Fu-Chih Yang, Jen-Hao Yeh, Chun Lin Tsai, Ru-Yi Su
  • Publication number: 20160155841
    Abstract: An embodiment of a structure provides an enhanced performing high voltage device, configured as a lateral diffused MOS (HV LDMOS) formed in a tri-well structure (a small n-well in an extended p-type well inside an n-type well) within the substrate with an anti-punch through layer and a buried layer below the n-type well, which reduces substrate leakage current to almost zero. The drain region is separated into two regions, one within the small n-well and one contacting the outer n-type well such that the substrate is available for electric potential lines during when a high drain voltage is applied.
    Type: Application
    Filed: February 8, 2016
    Publication date: June 2, 2016
    Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
  • Publication number: 20160141418
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Application
    Filed: January 22, 2016
    Publication date: May 19, 2016
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Publication number: 20160111498
    Abstract: A method of making a high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), is disclosed. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Application
    Filed: December 14, 2015
    Publication date: April 21, 2016
    Inventors: Ker-Hsiao Huo, Chih-Chang Cheng, Fu-Chih Yang, Jen-Hao Yeh, Chun Lin Tsai
  • Publication number: 20160056303
    Abstract: A device includes a p-well region, and a first High-Voltage N-type Well (HVNW) region and a second HVNW region contacting opposite edges of the p-well region. A P-type Buried Layer (PBL) has opposite edges in contact with the first HVNW region and the second HVNW region. An n-type buried well region is underlying the PBL. The p-well region and the n-type buried well region are in contact with a top surface and a bottom surface, respectively, of the PBL. The device further includes a n-well region in a top portion of the p-well region, an n-type source region in the n-well region, a gate stack overlapping a portion of the p-well region and a portion of the second HVNW region, and a channel region under the gate stack. The channel region interconnects the n-well region and the second HVNW region.
    Type: Application
    Filed: November 4, 2015
    Publication date: February 25, 2016
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker-Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 9257979
    Abstract: A device includes a buried well region and a first HVW region of the first conductivity, and an insulation region over the first HVW region. A drain region of the first conductivity type is disposed on a first side of the insulation region and in a top surface region of the first HVW region. A first well region and a second well region of a second conductivity type opposite the first conductivity type are on the second side of the insulation region. A second HVW region of the first conductivity type is disposed between the first and the second well regions, wherein the second HVW region is connected to the buried well region. A source region of the first conductivity type is in a top surface region of the second HVW region, wherein the source region, the drain region, and the buried well region form a JFET.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Patent number: 9257533
    Abstract: A method for fabricating a high voltage semiconductor transistor includes growing a first well region over a substrate having a first conductivity type, the first well region having a second type of conductivity. First, second and third portions of a second well region having the first type of conductivity are doped into the first well region. A first insulating layer is grown in and over the first well portion within the second well region. A second insulating layer is grown on the substrate over the third portion of the second well region. An anti-punch through region is doped into the first well region. A gate structure is formed on the substrate. A source region is formed in the first portion of the second well region on an opposite side of the gate structure from the first insulating layer. A drain region is formed in the first well region.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: February 9, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 9214547
    Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: December 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ker Hsiao Huo, Chih-Chang Cheng, Ru-Yi Su, Jen-Hao Yeh, Fu-Chih Yang, Chun Lin Tsai
  • Patent number: 9190476
    Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: November 17, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ker Hsiao Huo, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng
  • Patent number: 9190535
    Abstract: A device includes a p-well region, and a first High-Voltage N-type Well (HVNW) region and a second HVNW region contacting opposite edges of the p-well region. A P-type Buried Layer (PBL) has opposite edges in contact with the first HVNW region and the second HVNW region. An n-type buried well region is underlying the PBL. The p-well region and the n-type buried well region are in contact with a top surface and a bottom surface, respectively, of the PBL. The device further includes a n-well region in a top portion of the p-well region, an n-type source region in the n-well region, a gate stack overlapping a portion of the p-well region and a portion of the second HVNW region, and a channel region under the gate stack. The channel region interconnects the n-well region and the second HVNW region.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: November 17, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jen-Hao Yeh, Chih-Chang Cheng, Ru-Yi Su, Ker Hsiao Huo, Po-Chih Chen, Fu-Chih Yang, Chun-Lin Tsai
  • Publication number: 20150263164
    Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.
    Type: Application
    Filed: May 6, 2015
    Publication date: September 17, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ker Hsiao HUO, Ru-Yi SU, Fu-Chih YANG, Chun Lin TSAI, Chih-Chang CHENG