Patents by Inventor Keren Jacobs

Keren Jacobs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190108982
    Abstract: Methods and apparatus for performing high energy atomic layer etching are provided herein. Methods include providing a substrate having a material to be etched, exposing a surface of the material to a modification gas to modify the surface and form a modified surface, and exposing the modified surface to an energetic particle to preferentially remove the modified surface relative to an underlying unmodified surface where the energetic particle has an ion energy sufficient to overcome an average surface binding energy of the underlying unmodified surface. The energy of the energetic particle used is very high; in some cases, the power applied to a bias used when exposing the modified surface to the energetic particle is at least 150 eV.
    Type: Application
    Filed: October 1, 2018
    Publication date: April 11, 2019
    Inventors: Wenbing Yang, Samantha Tan, Tamal Mukherjee, Keren Jacobs Kanarik, Yang Pan
  • Patent number: 10186426
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 22, 2019
    Assignee: Lam Research Corporation
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Publication number: 20180350624
    Abstract: Methods for evaluating synergy of modification and removal operations for a wide variety of materials to determine process conditions for self-limiting etching by atomic layer etching are provided herein. Methods include determining the surface binding energy of the material, selecting a modification gas for the material where process conditions for modifying a surface of the material generate energy less than the modification energy and greater than the desorption energy, selecting a removal gas where process conditions for removing the modified surface generate energy greater than the desorption energy to remove the modified surface but less than the surface binding energy of the material to prevent sputtering, and calculating synergy to maximize the process window for atomic layer etching.
    Type: Application
    Filed: July 30, 2018
    Publication date: December 6, 2018
    Inventors: Keren Jacobs Kanarik, Taeseung Kim
  • Patent number: 10121639
    Abstract: A method for processing substrate in a chamber, which has at least one plasma generating source, a reactive gas source for providing reactive gas into the interior region of the chamber, and a non-reactive gas source for providing non-reactive gas into the interior region, is provided. The method includes performing a mixed-mode pulsing (MMP) preparation phase, including flowing reactive gas into the interior region and forming a first plasma to process the substrate that is disposed on a work piece holder. The method further includes performing a MMP reactive phase, including flowing at least non-reactive gas into the interior region, and forming a second plasma to process the substrate, the second plasma is formed with a reactive gas flow during the MMP reactive phase that is less than a reactive gas flow during the MMP preparation phase. Perform the method steps a plurality of times.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: November 6, 2018
    Assignee: Lam Research Corporation
    Inventor: Keren Jacobs Kanarik
  • Patent number: 10096487
    Abstract: Provided herein are methods of atomic layer etching (ALE) of metals including tungsten (W) and cobalt (Co). The methods disclosed herein provide precise etch control down to the atomic level, with etching a low as 1 ? to 10 ? per cycle in some embodiments. In some embodiments, directional control is provided without damage to the surface of interest. The methods may include cycles of a modification operation to form a reactive layer, followed by a removal operation to etch only this modified layer. The modification is performed without spontaneously etching the surface of the metal.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: October 9, 2018
    Assignee: Lam Research Corporation
    Inventors: Wenbing Yang, Samantha Tan, Keren Jacobs Kanarik, Jeffrey Marks, Taeseung Kim, Meihua Shen, Thorsten Lill
  • Publication number: 20180240682
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein. Methods involve introducing an activation gas at a chamber pressure and/or applying a bias using a bias power selected to preferentially etch the metal at or near the opening of the feature relative to the interior region of the feature. Apparatuses include integrated hardware for performing deposition of metal and atomic layer etching of metal in the same tool and/or without breaking vacuum.
    Type: Application
    Filed: April 16, 2018
    Publication date: August 23, 2018
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Patent number: 10056264
    Abstract: Provided herein are ALE methods of removing III-V materials such as gallium nitride (GaN) and related apparatus. In some embodiments, the methods involve exposing the III-V material to a chlorine-containing plasma without biasing the substrate to form a modified III-V surface layer; and applying a bias voltage to the substrate while exposing the modified III-V surface layer to a plasma to thereby remove the modified III-V surface layer. The disclosed methods are suitable for a wide range of applications, including etching processes for trenches and holes, fabrication of HEMTs, fabrication of LEDs, and improved selectivity in etching processes.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: August 21, 2018
    Assignee: Lam Research Corporation
    Inventors: Wenbing Yang, Tomihito Ohba, Samantha Tan, Keren Jacobs Kanarik, Jeffrey Marks, Kazuo Nojiri
  • Publication number: 20180233325
    Abstract: Methods of etching and smoothening films by exposing to a halogen-containing plasma and an inert plasma within a bias window in cycles are provided. Methods are suitable for etching and smoothening films of various materials in the semiconductor industry and are also applicable to applications in optics and other industries.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Inventors: Keren Jacobs Kanarik, Samantha Tan, Thorsten Lill, Meihua Shen, Yang Pan, Jeffrey Marks, Richard Wise
  • Publication number: 20180174860
    Abstract: Methods for evaluating synergy of modification and removal operations for a wide variety of materials to determine process conditions for self-limiting etching by atomic layer etching are provided herein. Methods include determining the surface binding energy of the material, selecting a modification gas for the material where process conditions for modifying a surface of the material generate energy less than the modification energy and greater than the desorption energy, selecting a removal gas where process conditions for removing the modified surface generate energy greater than the desorption energy to remove the modified surface but less than the surface binding energy of the material to prevent sputtering, and calculating synergy to maximize the process window for atomic layer etching.
    Type: Application
    Filed: December 13, 2017
    Publication date: June 21, 2018
    Inventor: Keren Jacobs Kanarik
  • Patent number: 9984858
    Abstract: Methods of etching and smoothening films by exposing to a halogen-containing plasma and an inert plasma within a bias window in cycles are provided. Methods are suitable for etching and smoothening films of various materials in the semiconductor industry and are also applicable to applications in optics and other industries.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 29, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Keren Jacobs Kanarik, Samantha Tan, Thorsten Lill, Meihua Shen, Yang Pan, Jeffrey Marks, Richard Wise
  • Patent number: 9972504
    Abstract: Methods of depositing tungsten into high aspect ratio features using a dep-etch-dep process integrating various deposition techniques with alternating pulses of surface modification and removal during etch are provided herein.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: May 15, 2018
    Assignee: Lam Research Corporation
    Inventors: Chiukin Steven Lai, Keren Jacobs Kanarik, Samantha Tan, Anand Chandrashekar, Teh-tien Su, Wenbing Yang, Michael Wood, Michal Danek
  • Publication number: 20180033635
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Application
    Filed: September 28, 2017
    Publication date: February 1, 2018
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Patent number: 9837312
    Abstract: Atomic layer etching (ALE) enables effective filling of small feature structures on semiconductor and other substrates, such as contacts and vias, by bottom-up fill, for example electroless deposition (ELD) of cobalt.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: December 5, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Samantha Tan, Taeseung Kim, Jengyi Yu, Praveen Nalla, Novy Tjokro, Artur Kolics, Keren Jacobs Kanarik
  • Patent number: 9805941
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: October 31, 2017
    Assignee: Lam Research Corporation
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Publication number: 20170229314
    Abstract: Methods and apparatuses for etching semiconductor material on substrates using atomic layer etching by chemisorption, by deposition, or by both chemisorption and deposition mechanisms in combination with oxide passivation are described herein. Methods involving atomic layer etching using a chemisorption mechanism involve exposing the semiconductor material to chlorine to chemisorb chlorine onto the substrate surface and exposing the modified surface to argon to remove the modified surface. Methods involving atomic layer etching using a deposition mechanism involve exposing the semiconductor material to a sulfur-containing gas and hydrogen to deposit and thereby modify the substrate surface and removing the modified surface.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 10, 2017
    Inventors: Samantha Tan, Wenbing Yang, Keren Jacobs Kanarik, Thorsten Lill, Yang Pan
  • Publication number: 20170117159
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Application
    Filed: January 6, 2017
    Publication date: April 27, 2017
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill
  • Publication number: 20170069462
    Abstract: Methods of etching and smoothening films by exposing to a halogen-containing plasma and an inert plasma within a bias window in cycles are provided. Methods are suitable for etching and smoothening films of various materials in the semiconductor industry and are also applicable to applications in optics and other industries.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 9, 2017
    Inventors: Keren Jacobs Kanarik, Samantha Tan, Thorsten Lill, Meihua Shen, Yang Pan, Jeffrey Marks, Richard Wise
  • Patent number: 9583316
    Abstract: A method for processing substrate in a processing chamber, which has at least one plasma generating source and a gas source for providing process gas into the chamber, is provided. The method includes exciting the plasma generating source with an RF signal having RF frequency. The method further includes pulsing the gas source, using at least a first gas pulsing frequency, such that a first process gas is flowed into the chamber during a first portion of a gas pulsing period and a second process gas is flowed into the chamber during a second portion of the gas pulsing period, which is associated with the first gas pulsing frequency. The second process gas has a lower reactant-gas-to-inert-gas ratio relative to a reactant-gas-to-inert-gas ratio of the first process gas. The second process gas is formed by removing at least a portion of a reactant gas flow from the first process gas.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: February 28, 2017
    Assignee: Lam Research Corporation
    Inventor: Keren Jacobs Kanarik
  • Publication number: 20170053810
    Abstract: Provided herein are methods of atomic layer etching (ALE) of metals including tungsten (W) and cobalt (Co). The methods disclosed herein provide precise etch control down to the atomic level, with etching a low as 1 ? to 10 ? per cycle in some embodiments. In some embodiments, directional control is provided without damage to the surface of interest. The methods may include cycles of a modification operation to form a reactive layer, followed by a removal operation to etch only this modified layer. The modification is performed without spontaneously etching the surface of the metal.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 23, 2017
    Inventors: Wenbing Yang, Samantha Tan, Keren Jacobs Kanarik, Jeffrey Marks, Taeseung Kim, Meihua Shen, Thorsten Lill
  • Patent number: 9576811
    Abstract: Methods are provided for integrating atomic layer etch and atomic layer deposition by performing both processes in the same chamber or reactor. Methods involve sequentially alternating between atomic layer etch and atomic layer deposition processes to prevent feature degradation during etch, improve selectivity, and encapsulate sensitive layers of a semiconductor substrate.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: February 21, 2017
    Assignee: Lam Research Corporation
    Inventors: Keren Jacobs Kanarik, Jeffrey Marks, Harmeet Singh, Samantha Tan, Alexander Kabansky, Wenbing Yang, Taeseung Kim, Dennis M. Hausmann, Thorsten Lill