Patents by Inventor Kerry Benenato

Kerry Benenato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220265774
    Abstract: The present disclosure relates to polynucleotides comprising an open reading frame of linked nucleosides encoding human interleukin-12 (IL12), functional fragments thereof, and fusion proteins comprising IL12. In some embodiments, the open reading frame is sequence-optimized. In particular embodiments, the disclosure provides sequence-optimized polynucleotides comprising nucleotides encoding the polypeptide sequence of human IL12, or sequences having high sequence identity with those sequence optimized polynucleotides.
    Type: Application
    Filed: April 15, 2022
    Publication date: August 25, 2022
    Inventors: Joshua FREDERICK, Susannah HEWITT, Ailin BAI, Stephen HOGE, Vladimir PRESNYAK, Iain James MCFADYEN, Kerry BENENATO, Ellalahewage Sathyajith KUMARASINGHE
  • Publication number: 20220265857
    Abstract: This disclosure provides improved lipid-based compositions, including lipid nanoparticle compositions, and methods of use thereof for delivering agents in vivo including nucleic acids and proteins. These compositions are not subject to accelerated blood clearance and they have an improved toxicity profile in vivo.
    Type: Application
    Filed: January 25, 2022
    Publication date: August 25, 2022
    Applicant: ModernaTX, Inc.
    Inventors: Gilles Besin, Stephen Hoge, Joseph Senn, Kerry Benenato, Staci Sabnis
  • Patent number: 11344504
    Abstract: The disclosure relates to compositions and methods for the preparation, manufacture and therapeutic use of combinations of immunomodulatory polynucleotides (e.g., mRNAs) encoding an immune response primer polypeptide (e.g., an interleukin 23 (IL-23) polypeptide or an interleukin 36? (IL-36-gamma) polypeptide), and an immune response co-stimulatory signal polypeptide (e.g., an OX40L polypeptide).
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: May 31, 2022
    Assignee: ModernaTX, Inc.
    Inventors: Joshua P. Frederick, Ailin Bai, Vladimir Presnyak, Stephen G. Hoge, Kerry Benenato, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Susannah Hewitt
  • Patent number: 11311602
    Abstract: The present disclosure relates to polynucleotides comprising an open reading frame of linked nucleosides encoding human interleukin-12 (IL12), functional fragments thereof, and fusion proteins comprising IL12. In some embodiments, the open reading frame is sequence-optimized. In particular embodiments, the disclosure provides sequence-optimized polynucleotides comprising nucleotides encoding the polypeptide sequence of human IL12, or sequences having high sequence identity with those sequence optimized polynucleotides.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: April 26, 2022
    Assignee: ModernaTX, Inc.
    Inventors: Joshua Frederick, Susannah Hewitt, Ailin Bai, Stephen Hoge, Vladimir Presnyak, Iain McFadyen, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Publication number: 20220118073
    Abstract: The disclosure relates to Lassa virus, Nipah virus, and betacoronavirus ribonucleic acid vaccines as well as methods of using the vaccines and compositions comprising the vaccines.
    Type: Application
    Filed: January 22, 2021
    Publication date: April 21, 2022
    Applicant: ModernaTX, Inc.
    Inventors: Giuseppe Ciaramella, Sunny Himansu, Vladimir Presnyak, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Publication number: 20220096630
    Abstract: The present disclosure relates to the use of nucleic acid (e.g., mRNA) combination therapies for the treatment of cancer. The disclosure provides compositions, and methods for their preparation, manufacture, and therapeutic use, wherein those compositions comprise at least two polynucleotides (e.g., mRNAs) in combination wherein the at least two polynucleotides are selected from the group consisting of (i) a polynucleotide encoding an immune response primer (e.g., IL23), (ii) a polynucleotide encoding an immune response co-stimulatory signal (e.g., OX40L), (iii) a polynucleotide encoding a checkpoint inhibitor (e.g., an anti CTLA-4 antibody), and, (iv) a combination thereof. The therapeutic methods disclosed herein comprise, e.g., the administration of a combination therapy disclosed herein for the treatment of cancer, e.g., by reducing the size of a tumor or inhibiting the growth of a tumor, in a subject in need thereof.
    Type: Application
    Filed: March 16, 2021
    Publication date: March 31, 2022
    Inventors: Joshua P. FREDERICK, Susannah HEWITT, Ailin BAI, Stephen G. HOGE, Vladimir PRESNYAK, Iain MCFADYEN, Kerry BENENATO, Ellalahewage Sathyajith KUMARASINGHE
  • Patent number: 11285222
    Abstract: This disclosure provides improved lipid-based compositions, including lipid nanoparticle compositions, and methods of use thereof for delivering agents in vivo including nucleic acids and proteins. These compositions are not subject to accelerated blood clearance and they have an improved toxicity profile in vivo.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: March 29, 2022
    Assignee: ModernaTX, Inc.
    Inventors: Gilles Besin, Stephen Hoge, Joseph Senn, Kerry Benenato, Staci Sabnis
  • Publication number: 20220071915
    Abstract: The invention relates to mRNA therapy for the treatment of Citrullinemia Type 2 (“CTLN2”). mRNAs for use in the invention, when administered in vivo, encode human Citrin, isoforms thereof, functional fragments thereof, and fusion proteins comprising Citrin. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of Citrin expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of biomarkers associated with deficient Citrin activity in subjects, namely ammonia and/or triglycerides.
    Type: Application
    Filed: January 21, 2021
    Publication date: March 10, 2022
    Applicant: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Jingsong Cao, Lin Tung Guey, Staci Sabnis
  • Publication number: 20220047518
    Abstract: The present disclosure in part provides compounds (i.e., PEG lipids) which are useful in pharmaceutical compositions, cosmetic compositions, and drug delivery systems, e.g, for use in lipid nanoparticle (LNP) formulations. The present disclosure also provides LNP formulations comprising PEG lipids described herein, and methods of using the same. For example, the LNPs provided herein are useful for the delivery of an agent (e.g, therapeutic agent) to a subject. The PEG lipids and LNPs provided herein, in certain embodiments, exhibit increased PEG shedding compared to existing PEG lipids and LNP formulations.
    Type: Application
    Filed: September 19, 2019
    Publication date: February 17, 2022
    Applicant: Moderna TX, Inc.
    Inventors: Edward J. Hennessy, Kerry Benenato
  • Patent number: 11185510
    Abstract: The disclosure relates to compositions and methods for the preparation, manufacture and therapeutic use of combinations of immunomodulatory polynucleotides (e.g., mRNAs) encoding an immune response primer polypeptide (e.g., an interleukin 23 (IL-23) polypeptide or an interleukin 36? (IL-36-gamma) polypeptide), and an immune response co-stimulatory signal polypeptide (e.g., an OX40L polypeptide).
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: November 30, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Joshua P. Frederick, Ailin Bai, Vladimir Presnyak, Stephen G. Hoge, Kerry Benenato, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Susannah Hewitt
  • Publication number: 20210299221
    Abstract: The present disclosure relates to polynucleotides comprising an open reading frame of linked nucleosides encoding human interleukin-12 (IL12), functional fragments thereof, and fusion proteins comprising IL12. In some embodiments, the open reading frame is sequence-optimized. In particular embodiments, the disclosure provides sequence-optimized polynucleotides comprising nucleotides encoding the polypeptide sequence of human IL12, or sequences having high sequence identity with those sequence optimized polynucleotides.
    Type: Application
    Filed: May 5, 2021
    Publication date: September 30, 2021
    Inventors: Joshua FREDERICK, Susannah HEWITT, Ailin BAI, Stephen HOGE, Vladimir PRESNYAK, Iain MCFADYEN, Kerry BENENATO, Ellalahewage Sathyajith KUMARASINGHE
  • Publication number: 20210269830
    Abstract: The invention relates to mRNA therapy for the treatment of galactosemia type 1 (Gal-1). mRNAs for use in the invention, when administered in vivo, encode human galactose-1-phosphate uridylyltransferase (GALT), isoforms thereof, functional fragments thereof, and fusion proteins comprising GALT. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GALT expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GALT activity in subjects, namely galactose-1-phosphate (Gal-1-P).
    Type: Application
    Filed: January 21, 2021
    Publication date: September 2, 2021
    Applicant: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Ding An, Staci Sabnis
  • Publication number: 20210252129
    Abstract: The disclosure relates to Lassa virus, Nipah virus, and betacoronavirus ribonucleic acid vaccines as well as methods of using the vaccines and compositions comprising the vaccines.
    Type: Application
    Filed: January 22, 2021
    Publication date: August 19, 2021
    Applicant: ModernaTX, Inc.
    Inventors: Giuseppe Ciaramella, Sunny Himansu, Vladimir Presnyak, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Patent number: 11071716
    Abstract: The disclosure relates to compositions and methods for the preparation, manufacture and therapeutic use of combinations of immunomodulatory polynucleotides (e.g., mRNAs) encoding an immune response primer polypeptide (e.g., an interleukin 23 (IL-23) polypeptide or an interleukin 36? (IL-36-gamma) polypeptide), and an immune response co-stimulatory signal polypeptide (e.g., an OX40L polypeptide).
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: July 27, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Joshua Frederick, Ailin Bai, Vladimir Presnyak, Stephen G. Hoge, Kerry Benenato, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Susannah Hewitt
  • Publication number: 20210206818
    Abstract: The invention features isolated mRNAs encoding at least one intracellular binding domain, including mRNAs comprising one or more modified nucleobase and preferably lacking an encoded scaffold polypeptide, and methods of using the same, for example, for inducing apoptosis and/or treating cancer (e.g., liver cancer or colorectal cancer).
    Type: Application
    Filed: January 20, 2017
    Publication date: July 8, 2021
    Inventors: Eric Yi-Chun HUANG, Joshua P. FREDERICK, Kristine MCKINNEY, Christina HENDERSON, Kahlin CHEUNG-ONG, Joseph BOLEN, Stephen Michael KELSEY, Michael MORIN, Sushma GURUMURTHY, Kerry BENENATO, Stephen HOGE, Iain MCFADYEN, Vladimir PRESNYAK
  • Patent number: 11000573
    Abstract: The present disclosure relates to polynucleotides comprising an open reading frame of linked nucleosides encoding human interleukin-12 (IL12), functional fragments thereof, and fusion proteins comprising IL12. In some embodiments, the open reading frame is sequence-optimized. In particular embodiments, the disclosure provides sequence-optimized polynucleotides comprising nucleotides encoding the polypeptide sequence of human IL12, or sequences having high sequence identity with those sequence optimized polynucleotides.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: May 11, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Joshua Frederick, Susannah Hewitt, Ailin Bai, Stephen Hoge, Vladimir Presnyak, Iain McFadyen, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Patent number: 11001861
    Abstract: The invention relates to mRNA therapy for the treatment of galactosemia type 1 (Gal-1). mRNAs for use in the invention, when administered in vivo, encode human galactose-1-phosphate uridylyltransferase (GALT), isoforms thereof, functional fragments thereof, and fusion proteins comprising GALT. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GALT expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GALT activity in subjects, namely galactose-1-phosphate (Gal-1-P).
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: May 11, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Ding An, Staci Sabnis
  • Patent number: 10993918
    Abstract: The invention relates to mRNA therapy for the treatment of Citrullinemia Type 2 (“CTLN2”). mRNAs for use in the invention, when administered in vivo, encode human Citrin, isoforms thereof, functional fragments thereof, and fusion proteins comprising Citrin. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of Citrin expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of biomarkers associated with deficient Citrin activity in subjects, namely ammonia and/or triglycerides.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: May 4, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Jingsong Cao, Lin Tung Guey, Staci Sabnis
  • Patent number: 10973917
    Abstract: The present disclosure relates to the use of nucleic acid (e.g., mRNA) combination therapies for the treatment of cancer. The disclosure provides compositions, and methods for their preparation, manufacture, and therapeutic use, wherein those compositions comprise at least two polynucleotides (e.g., mRNAs) in combination wherein the at least two polynucleotides are selected from the group consisting of (i) a polynucleotide encoding an immune response primer (e.g., IL23), (ii) a polynucleotide encoding an immune response co-stimulatory signal (e.g., OX40L), (iii) a polynucleotide encoding a checkpoint inhibitor (e.g., an anti CTLA-4 antibody), and, (iv) a combination thereof. The therapeutic methods disclosed herein comprise, e.g., the administration of a combination therapy disclosed herein for the treatment of cancer, e.g., by reducing the size of a tumor or inhibiting the growth of a tumor, in a subject in need thereof.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 13, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Joshua P. Frederick, Susannah Hewitt, Ailin Bai, Stephen G. Hoge, Vladimir Presnyak, Iain McFadyen, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Publication number: 20210038529
    Abstract: The disclosure relates to compositions and methods for the preparation, manufacture and therapeutic use of combinations of immunomodulatory polynucleotides (e.g., mRNAs) encoding an immune response primer polypeptide (e.g., an interleukin 23 (IL-23) polypeptide or an interleukin 36? (IL-36-gamma) polypeptide), and an immune response co-stimulatory signal polypeptide (e.g., an OX40L polypeptide).
    Type: Application
    Filed: October 15, 2020
    Publication date: February 11, 2021
    Inventors: Joshua FREDERICK, Ailin BAI, Vladimir PRESNYAK, Stephen G. HOGE, Kerry BENENATO, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Susannah HEWITT