Patents by Inventor Kerry Benenato

Kerry Benenato has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190002890
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: August 23, 2018
    Publication date: January 3, 2019
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20190000932
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: August 23, 2018
    Publication date: January 3, 2019
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Publication number: 20180369374
    Abstract: The present disclosure relates to the use of nucleic acid (e.g., mRNA) combination therapies for the treatment of cancer. The disclosure provides compositions, and methods for their preparation, manufacture, and therapeutic use, wherein those compositions comprise at least two polynucleotides (e.g., mRNAs) in combination wherein the at least two polynucleotides are selected from the group consisting of (i) a polynucleotide encoding an immune response primer (e.g., IL23), (ii) a polynucleotide encoding an immune response co-stimulatory signal (e.g., OX40L), (iii) a polynucleotide encoding a checkpoint inhibitor (e.g., an anti CTLA-4 antibody), and, (iv) a combination thereof. The therapeutic methods disclosed herein comprise, e.g., the administration of a combination therapy disclosed herein for the treatment of cancer, e.g., by reducing the size of a tumor or inhibiting the growth of a tumor, in a subject in need thereof.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 27, 2018
    Inventors: Joshua P. FREDERICK, Susannah HEWITT, Ailin BAI, Stephen G. HOGE, Vladimir PRESNYAK, Iain MCFADYEN, Kerry BENENATO, Ellalahewage Sathyajith KUMARASINGHE
  • Publication number: 20180371047
    Abstract: The invention relates to mRNA therapy for the treatment of fibrosis and/or cardiovascular disease. mRNAs for use in the invention, when administered in vivo, encode human relaxin, isoforms thereof, functional fragments thereof, and fusion proteins comprising relaxin. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of relaxin expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient relaxin activity in subjects.
    Type: Application
    Filed: July 2, 2018
    Publication date: December 27, 2018
    Applicant: ModernaTX, Inc.
    Inventors: Barry Ticho, Nadege Briancon-Eris, Zhinan Xia, Athanasios Dousis, Seymour de Picciotto, Vladimir Presnyak, Stephen Hoge, Iain Mcfadyen, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Publication number: 20180318229
    Abstract: The disclosure relates to compositions and methods for the preparation, manufacture and therapeutic use of combinations of immunomodulatory polynucleotides (e.g., mRNAs) encoding an immune response primer polypeptide (e.g., an interleukin 23 (IL-23) polypeptide or an interleukin 36? (IL-36-gamma) polypeptide), and an immune response co-stimulatory signal polypeptide (e.g., an OX40L polypeptide).
    Type: Application
    Filed: June 1, 2018
    Publication date: November 8, 2018
    Inventors: Joshua FREDERICK, Ailin BAI, Vladimir PRESNYAK, Stephen HOGE, Kerry BENENATO, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Susannah HEWITT
  • Publication number: 20180147298
    Abstract: This disclosure provides improved lipid-based compositions, including lipid nanoparticle compositions, and methods of use thereof for delivering agents in vivo including nucleic acids and proteins. These compositions are not subject to accelerated blood clearance and they have an improved toxicity profile in vivo.
    Type: Application
    Filed: August 10, 2017
    Publication date: May 31, 2018
    Applicant: ModernaTX, Inc.
    Inventors: Gilles Besin, Stephen Hoge, Joseph Senn, Kerry Benenato, Staci Sabnis
  • Publication number: 20180028664
    Abstract: This disclosure provides improved lipid-based compositions, including lipid nanoparticle compositions, and methods of use thereof for delivering agents in vivo including nucleic acids and proteins. These compositions are not subject to accelerated blood clearance and they have an improved toxicity profile in vivo.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 1, 2018
    Applicant: ModernaTX, Inc.
    Inventors: Gilles Besin, Stephen Hoge, Joseph Senn, Kerry Benenato, Staci Sabnis