Patents by Inventor Kevin A. Splittstoesser

Kevin A. Splittstoesser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11085672
    Abstract: A self-heating thermal interface material (TIM) may be formed using heating components dispersed within the TIM. The heating components may produce heat when the TIM is compressed. The heating components may be formed from microcapsules and the microcapsules may contain exothermic reactants. The reactants may be isolated from contact within the microcapsule until a compressive force is applied.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: August 10, 2021
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 10831909
    Abstract: In an example, an apparatus includes a biological analysis component and a control component. The biological analysis component is configured to obtain an expected biological sample value. The expected biological sample value indicates an expected concentration of a material biologically processed by a courier. The biological analysis component is further configured to determine whether a measured biological sample value is associated with the courier based on a comparison of the expected biological sample value to the measured biological sample value. The control component is configured to perform a first set of operations based on the result of the comparison indicating that the measured biological sample value is associated with the courier. The control component is configured to perform a second set of operations based on the result of the comparison indicating that the measured biological sample value is outside an acceptable range of the biological sample value.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Matthew S. Doyle, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 10657271
    Abstract: In an example, a method includes obtaining an expected biological sample value at a computing device. The expected biological sample value indicates an expected concentration of a material biologically processed by a courier. The computing device determines whether the measured biological sample value is associated with the courier based on a comparison of the expected biological sample value to the measured biological sample value. The method also includes determining a particular set of operations to be performed at the computing device based on a result of the comparison.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Matthew S. Doyle, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 10595416
    Abstract: A circuit apparatus includes a first circuit feature upon a first insulator and a second circuit feature upon the first insulator. The first circuit feature includes a planarized surface and the second circuit feature includes an irregular surface. The first circuit feature and the second circuit feature may be formed from patterning a conductive sheet that is upon the first insulator. The conductive sheet includes an irregular surface and a planarized surface. Conductive sheet roughness is minimized in first regions thereof and is maintained in second regions thereof. Selectively planarizing portions of the conductive sheet allows for the utilization of lower cost rougher conductive sheets. The planarized surface allows for increased signal integrity and reduced insertion loss and the irregular surface allows for increased adhesion and enhancing reliability of the circuit apparatus.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: March 17, 2020
    Assignee: International Business Machines Corporation
    Inventors: Brian L. Carlson, John R. Dangler, Roger S. Krabbenhoft, Kevin A. Splittstoesser
  • Patent number: 10390439
    Abstract: A circuit apparatus includes at least one circuit feature formed from patterning a conductive sheet. The conductive sheet includes an irregular surface and a planarized surface. Conductive sheet roughness is minimized in first regions of the circuit apparatus and is maintained in second regions of the circuit apparatus. Selectively planarizing portions of the conductive sheet allows for the utilization of lower cost rougher conductive sheets. The planarized surface allows for increased signal integrity and reduced insertion loss and the irregular surface allows for increased adhesion and enhancing reliability of the circuit apparatus.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: August 20, 2019
    Assignee: International Business Machines Corporation
    Inventors: Brian L. Carlson, John R. Dangler, Roger S. Krabbenhoft, Kevin A. Splittstoesser
  • Publication number: 20190254172
    Abstract: A circuit apparatus includes a first circuit feature upon a first insulator and a second circuit feature upon the first insulator. The first circuit feature includes a planarized surface and the second circuit feature includes an irregular surface. The first circuit feature and the second circuit feature may be formed from patterning a conductive sheet that is upon the first insulator. The conductive sheet includes an irregular surface and a planarized surface. Conductive sheet roughness is minimized in first regions thereof and is maintained in second regions thereof. Selectively planarizing portions of the conductive sheet allows for the utilization of lower cost rougher conductive sheets. The planarized surface allows for increased signal integrity and reduced insertion loss and the irregular surface allows for increased adhesion and enhancing reliability of the circuit apparatus.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Inventors: Brian L. Carlson, John R. Dangler, Roger S. Krabbenhoft, Kevin A. Splittstoesser
  • Publication number: 20190170403
    Abstract: A self-heating thermal interface material (TIM) may be formed using heating components dispersed within the TIM. The heating components may produce heat when the TIM is compressed. The heating components may be formed from microcapsules and the microcapsules may contain exothermic reactants. The reactants may be isolated from contact within the microcapsule until a compressive force is applied.
    Type: Application
    Filed: February 6, 2019
    Publication date: June 6, 2019
    Inventors: Eric J. Campbell, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 10309692
    Abstract: A self-heating thermal interface material (TIM) may be formed using heating components dispersed within the TIM. The heating components may produce heat when the TIM is compressed. The heating components may be formed from microcapsules and the microcapsules may contain exothermic reactants. The reactants may be isolated from contact within the microcapsule until a compressive force is applied.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: June 4, 2019
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 10169499
    Abstract: In an example, a method includes storing thermoset resin rheology data associated with a thermoset resin at a memory. The thermoset resin rheology data includes a plurality of sets of dynamic fluid flow properties that are measured for the thermoset resin. The method includes receiving, at a computing device, information associated with a printed circuit board (PCB) laminate design. The method also includes receiving, at the computing device, a first set of PCB lamination parameters. The method further includes storing, at the computing device, a first thermoset resin flow model. The first thermoset resin flow model is generated based on the thermoset resin rheology data, the information associated with the PCB laminate design, and the first set of PCB lamination parameters.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: January 1, 2019
    Assignee: International Business Machines Corporation
    Inventors: Joseph Kuczynski, Arvind K. Sinha, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 10101462
    Abstract: An apparatus and system for measuring electromagnetic radiation emitted by one or more electronic components included on a first substrate, and an associated method of controlling the emitted radiation. The apparatus includes a cap member having an interior surface and an exterior surface, the interior surface defining an interior cavity and arranged to receive at least a portion of the one or more electronic components within the interior cavity. The apparatus further includes at least one sensor device coupled with the cap member and configured to detect electromagnetic radiation emitted by the one or more electronic components. The apparatus further includes at least one conductive pad disposed on the cap member and coupled with the at least one sensor device, wherein the conductive pad is configured to couple with external circuitry to transmit a sensor signal generated by the at least one sensor device responsive to the detected electromagnetic radiation.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: October 16, 2018
    Assignee: International Business Machines Corporation
    Inventors: Matthew S. Doyle, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 10072185
    Abstract: A self-heating sealant or adhesive may be formed using multi-compartment microcapsules dispersed within a sealant or adhesive. The multi-compartment microcapsules produce heat when subjected to a stimulus (e.g., a compressive force, a magnetic field, or combinations thereof). In some embodiments, the multi-compartment microcapsules have first and second compartments separated by an isolating structure adapted to rupture in response to the stimulus, wherein the first and second compartments contain reactants that come in contact and react to produce heat when the isolating structure ruptures. In some embodiments, the multi-compartment microcapsules are shell-in-shell microcapsules each having an inner shell contained within an outer shell, wherein the inner shell defines the isolating structure and the outer shell does not allow the heat-generating chemistry to escape the microcapsule upon rupture of the inner shell.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: September 11, 2018
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Publication number: 20180103548
    Abstract: A circuit apparatus includes at least one circuit feature formed from patterning a conductive sheet. The conductive sheet includes an irregular surface and a planarized surface. Conductive sheet roughness is minimized in first regions of the circuit apparatus and is maintained in second regions of the circuit apparatus. Selectively planarizing portions of the conductive sheet allows for the utilization of lower cost rougher conductive sheets. The planarized surface allows for increased signal integrity and reduced insertion loss and the irregular surface allows for increased adhesion and enhancing reliability of the circuit apparatus.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 12, 2018
    Inventors: Brian L. Carlson, John R. Dangler, Roger S. Krabbenhoft, Kevin A. Splittstoesser
  • Patent number: 9942990
    Abstract: A circuit apparatuses include at least one circuit feature formed from patterning a conductive sheet. The conductive sheet includes an irregular surface and a planarized surface. Conductive sheet roughness is minimized in first regions of the circuit apparatus and is maintained in second regions of the circuit apparatus. Selectively planarizing portions of the conductive sheet allows for the utilization of lower cost rougher conductive sheets. The planarized surface allows for increased signal integrity and reduced insertion loss and the irregular surface allows for increased adhesion and enhancing reliability of the circuit apparatus.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: April 10, 2018
    Assignee: International Business Machines Corporation
    Inventors: Brian L. Carlson, John R. Dangler, Roger S. Krabbenhoft, Kevin A. Splittstoesser
  • Patent number: 9926471
    Abstract: A self-heating sealant or adhesive may be formed using multi-compartment microcapsules dispersed within a sealant or adhesive. The multi-compartment microcapsules produce heat when subjected to a stimulus (e.g., a compressive force, a magnetic field, or combinations thereof). In some embodiments, the multi-compartment microcapsules have first and second compartments separated by an isolating structure adapted to rupture in response to the stimulus, wherein the first and second compartments contain reactants that come in contact and react to produce heat when the isolating structure ruptures. In some embodiments, the multi-compartment microcapsules are shell-in-shell microcapsules each having an inner shell contained within an outer shell, wherein the inner shell defines the isolating structure and the outer shell does not allow the heat-generating chemistry to escape the microcapsule upon rupture of the inner shell.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: March 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Publication number: 20180066164
    Abstract: A self-heating sealant or adhesive may be formed using multi-compartment microcapsules dispersed within a sealant or adhesive. The multi-compartment microcapsules produce heat when subjected to a stimulus (e.g., a compressive force, a magnetic field, or combinations thereof). In some embodiments, the multi-compartment microcapsules have first and second compartments separated by an isolating structure adapted to rupture in response to the stimulus, wherein the first and second compartments contain reactants that come in contact and react to produce heat when the isolating structure ruptures. In some embodiments, the multi-compartment microcapsules are shell-in-shell microcapsules each having an inner shell contained within an outer shell, wherein the inner shell defines the isolating structure and the outer shell does not allow the heat-generating chemistry to escape the microcapsule upon rupture of the inner shell.
    Type: Application
    Filed: November 10, 2017
    Publication date: March 8, 2018
    Inventors: Eric J. Campbell, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 9896389
    Abstract: A multi-compartment microcapsule produces heat when subjected to a stimulus (e.g., a compressive force, a magnetic field, or combinations thereof). In some embodiments, the multi-compartment microcapsules have first and second compartments separated by an isolating structure adapted to rupture in response to the stimulus, wherein the first and second compartments contain reactants that come in contact and react to produce heat when the isolating structure ruptures. In some embodiments, the multi-compartment microcapsules are shell-in-shell microcapsules each having an inner shell contained within an outer shell, wherein the inner shell defines the isolating structure and the outer shell does not allow the heat-generating chemistry to escape the microcapsule upon rupture of the inner shell.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: February 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 9873132
    Abstract: An apparatus includes a spray module with at least one column of spray nozzles. Each spray nozzle is configured to deliver a processing substance on a semiconductor substrate during a process for semiconductor manufacturing as the semiconductor substrate moves past the spray module. The at least one column of spray nozzles is arranged with respect to a direction of travel of the semiconductor substrate so the semiconductor substrate passes the spray nozzles. A location module identifies a location of the semiconductor substrate with respect to the spray module. A spray pattern module determines a spray pattern of where a processing substance is to be delivered to the semiconductor substrate and a nozzle control module actuates each spray nozzle independently based on the spray pattern and a location of the semiconductor identified by the location module.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: January 23, 2018
    Assignee: LENOVO ENTERPRISE SOLUTIONS (SINGAPORE) PTE. LTD.
    Inventors: John Dangler, Brian L. Carlson, Roger Krabbenhoft, Kevin A. Splittstoesser, Jeffrey A. Taylor
  • Publication number: 20180016474
    Abstract: A self-heating sealant or adhesive may be formed using multi-compartment microcapsules dispersed within a sealant or adhesive. The multi-compartment microcapsules produce heat when subjected to a stimulus (e.g., a compressive force, a magnetic field, or combinations thereof). In some embodiments, the multi-compartment microcapsules have first and second compartments separated by an isolating structure adapted to rupture in response to the stimulus, wherein the first and second compartments contain reactants that come in contact and react to produce heat when the isolating structure ruptures. In some embodiments, the multi-compartment microcapsules are shell-in-shell microcapsules each having an inner shell contained within an outer shell, wherein the inner shell defines the isolating structure and the outer shell does not allow the heat-generating chemistry to escape the microcapsule upon rupture of the inner shell.
    Type: Application
    Filed: September 27, 2017
    Publication date: January 18, 2018
    Inventors: Eric J. Campbell, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 9856404
    Abstract: A self-heating sealant or adhesive may be formed using multi-compartment microcapsules dispersed within a sealant or adhesive. The multi-compartment microcapsules produce heat when subjected to a stimulus (e.g., a compressive force, a magnetic field, or combinations thereof). In some embodiments, the multi-compartment microcapsules have first and second compartments separated by an isolating structure adapted to rupture in response to the stimulus, wherein the first and second compartments contain reactants that come in contact and react to produce heat when the isolating structure ruptures. In some embodiments, the multi-compartment microcapsules are shell-in-shell microcapsules each having an inner shell contained within an outer shell, wherein the inner shell defines the isolating structure and the outer shell does not allow the heat-generating chemistry to escape the microcapsule upon rupture of the inner shell.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: January 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Eric J. Campbell, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil
  • Patent number: 9697380
    Abstract: An apparatus for providing security for an integrated circuit (IC) chip is disclosed. The apparatus may include the IC chip, attached to a surface of a printed circuit board (PCB). The PCB may include a first, electrically insulative, conformal coating layer attached to the PCB surface and to exposed IC chip surfaces. The PCB may also include a Wheatstone bridge circuit to indicate changes to a second, X-ray opaque, optically opaque and electrically resistive, conformal coating layer. The circuit may include four resistors, formed from second conformal coating layer regions, four sets of electrically conductive pads on the PCB, each set electrically connected to a resistor of the four resistors. The circuit may also include a voltage source, connected to two conductive pads and a monitoring device, connected to another two conductive pads and configured to detect a change of resistance of the Wheatstone bridge.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: July 4, 2017
    Assignee: International Business Machines Corporation
    Inventors: Matthew S. Doyle, Joseph Kuczynski, Kevin A. Splittstoesser, Timothy J. Tofil