Patents by Inventor Kevin J. Fischer

Kevin J. Fischer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140151889
    Abstract: Techniques are disclosed for enhancing the dielectric breakdown performance of integrated circuit (IC) interconnects. The disclosed techniques can be used to selectively etch the dielectric layer of an IC to form a recess, for example, between a given pair of adjacent/neighboring interconnects (e.g., metal lines). Thereafter, a layer of dielectric material of higher dielectric breakdown field (Ec) than the surrounding/underlying dielectric material (or other suitable insulator, as will be apparent in light of this disclosure) may be deposited/grown so as to substantially conform to the topology provided by the adjacent/neighboring interconnects and etched recess. In some cases, this dielectric layer may help to prevent or otherwise reduce: (1) dielectric breakdown between the adjacent/neighboring interconnects by locally increasing the dielectric breakdown voltage (VBD); and/or (2) diffusion of the interconnect fill metal into the surrounding/underlying dielectric material.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 5, 2014
    Inventors: Pavel S. Plekhanov, Kevin J. Fischer, Qiang Fu, Hiroki Hiramatsu
  • Publication number: 20130320564
    Abstract: A method including forming a dielectric layer on a contact point of an integrated circuit structure; forming a hardmask including a dielectric material on a surface of the dielectric layer; and forming at least one via in the dielectric layer to the contact point using the hardmask as a pattern. An apparatus including a circuit substrate including at least one active layer including a contact point; a dielectric layer on the at least one active layer; a hardmask including a dielectric material having a least one opening therein for an interconnect material; and an interconnect material in the at least one opening of the hardmask and through the dielectric layer to the contact point.
    Type: Application
    Filed: December 29, 2011
    Publication date: December 5, 2013
    Inventors: Ruth A. Brain, Kevin J. Fischer, Michael A. Childs
  • Publication number: 20130270675
    Abstract: An on-chip capacitor a semiconductive substrate is fabricated in a passivation layer that is above the back-end metallization. At least three electrodes are configured in the on-chip capacitor and power and ground vias couple at least two of the at least three electrodes. The first via has a first-coupled configuration to at least one of the first- second- and third electrodes and the second via has a second-coupled configuration to at least one of the first- second- and third electrodes.
    Type: Application
    Filed: October 1, 2011
    Publication date: October 17, 2013
    Inventors: Michael A. Childs, Kevin J. Fischer, Sanjay S. Natarajan
  • Patent number: 8278718
    Abstract: A method for forming a slot contact structure for transistor performance enhancement. A contact opening is formed to expose a contact region, and a slot contact is disposed within the contact opening in order to induce a stress on an adjacent channel region. In an embodiment, a stress inducing barrier plug is disposed within a portion of the contact opening and the remainder of the contact opening is filled with a lower resistivity contact metal. By selecting the proper materials and deposition parameters, the slot contact can be tuned to induce a tensile or compressive stress on the adjacent channel region, thus being applicable for both p-type and n-type devices.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: October 2, 2012
    Assignee: Intel Corporation
    Inventors: Kevin J. Fischer, Vinay B. Chikarmane, Brennan L. Peterson
  • Publication number: 20120068273
    Abstract: A method for forming a slot contact structure for transistor performance enhancement. A contact opening is formed to expose a contact region, and a slot contact is disposed within the contact opening in order to induce a stress on an adjacent channel region. In an embodiment, a stress inducing barrier plug is disposed within a portion of the contact opening and the remainder of the contact opening is filled with a lower resistivity contact metal. By selecting the proper materials and deposition parameters, the slot contact can be tuned to induce a tensile or compressive stress on the adjacent channel region, thus being applicable for both p-type and n-type devices.
    Type: Application
    Filed: November 29, 2011
    Publication date: March 22, 2012
    Inventors: Kevin J. Fischer, Vinay B. Chikarmane, Brennan L. Peterson
  • Patent number: 8120119
    Abstract: A method for forming a slot contact structure for transistor performance enhancement. A contact opening is formed to expose a contact region, and a slot contact is disposed within the contact opening in order to induce a stress on an adjacent channel region. In an embodiment, a stress inducing barrier plug is disposed within a portion of the contact opening and the remainder of the contact opening is filled with a lower resistivity contact metal. By selecting the proper materials and deposition parameters, the slot contact can be tuned to induce a tensile or compressive stress on the adjacent channel region, thus being applicable for both p-type and n-type devices.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: February 21, 2012
    Assignee: Intel Corporation
    Inventors: Kevin J. Fischer, Vinay B. Chikarmane, Brennan L. Peterson
  • Publication number: 20120007242
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 12, 2012
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Patent number: 8058710
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: November 15, 2011
    Assignee: Intel Corporation
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Patent number: 7968952
    Abstract: A method for forming a slot contact structure for transistor performance enhancement. A contact opening is formed to expose a contact region, and a slot contact is disposed within the contact opening in order to induce a stress on an adjacent channel region. In an embodiment, a stress inducing barrier plug is disposed within a portion of the contact opening and the remainder of the contact opening is filled with a lower resistivity contact metal. By selecting the proper materials and deposition parameters, the slot contact can be tuned to induce a tensile or compressive stress on the adjacent channel region, thus being applicable for both p-type and n-type devices.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: June 28, 2011
    Assignee: Intel Corporation
    Inventors: Kevin J. Fischer, Vinay B. Chikarmane, Brennan L. Peterson
  • Patent number: 7971188
    Abstract: A method and system are provided for remotely controlling the reporting of events occurring within a computer. A remote control file identifying the events and conditions under which the events should be reported is periodically retrieved at a client computer. When an event occurs within a client computer, the remote control file is searched for data indicating that the event should be recorded. If data is located within the remote control file indicating that the event should be reported, data describing the event is collected. The collected data then may be subsequently reported. The remote control file may also include data identifying the type of data to be collected and a date and time after which data for a particular event should not be collected or reported.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: June 28, 2011
    Assignee: Microsoft Corporation
    Inventors: Steven M. Greenberg, Jeffrey E. Larsson, Kevin J. Fischer
  • Publication number: 20110150031
    Abstract: Methods and apparatuses for Micro-Electro-Mechanical Systems (MEMS) resonator to monitor temperature in an integrated circuit. Fabricating the resonator in an interconnect layer provides a way to implement thermal detection means which is tolerant of manufacturing process variations. Sensor readout and control circuits can be on silicon if desired, for example, a positive feedback amplifier to form an oscillator in conjunction with the resonator and a counter to count oscillator frequency.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Mohamed A. Abdelmoneum, Tawfik M. Rahal-Arabi, Gregory F. Taylor, Kevin J. Fischer, Andrew Yeoh
  • Publication number: 20110133259
    Abstract: A method for forming a slot contact structure for transistor performance enhancement. A contact opening is formed to expose a contact region, and a slot contact is disposed within the contact opening in order to induce a stress on an adjacent channel region. In an embodiment, a stress inducing barrier plug is disposed within a portion of the contact opening and the remainder of the contact opening is filled with a lower resistivity contact metal. By selecting the proper materials and deposition parameters, the slot contact can be tuned to induce a tensile or compressive stress on the adjacent channel region, thus being applicable for both p-type and n-type devices.
    Type: Application
    Filed: February 15, 2011
    Publication date: June 9, 2011
    Inventors: Kevin J. Fischer, Vinay B. Chikarmane, Brennan L. Peterson
  • Patent number: 7719062
    Abstract: A method for forming a slot contact structure for n-type transistor performance enhancement. A slot contact opening is formed to expose a contact region, and a barrier plug is disposed within a portion of the slot contact opening in order to induce a tensile stress on an adjacent channel region. The remainder of the slot contact opening is filled with a lower resistivity contact metal. Barrier plug deposition temperature can be varied in order to tune the tensile stress on the adjacent channel region.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: May 18, 2010
    Assignee: Intel Corporation
    Inventors: Kevin J. Fischer, Vinay B. Chikarmane, Brennan L. Peterson
  • Patent number: 7582558
    Abstract: Copper interconnects may be made using the damascene process with reduced copper corrosion. Copper corrosion may be reduced by planarizing through excess copper down to, but not completely through, a copper diffusion barrier layer. The copper diffusion barrier layer may be removed using a different technique. Thereafter, suitable chemicals may be utilized to clean the structure.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: September 1, 2009
    Assignee: Intel Corporation
    Inventors: Vinay B. Chikarmane, Kevin J. Fischer, Brennan L. Peterson
  • Publication number: 20080179748
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Application
    Filed: March 28, 2008
    Publication date: July 31, 2008
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Patent number: 7402519
    Abstract: Methods of fabricating a capped interconnect for a microelectronic device which includes a sealing feature for any gaps between a capping layer and an interconnect and structures formed therefrom. The sealing features improve encapsulation of the interconnect, which substantially reduces or prevents electromigration and/or diffusion of conductive material from the capped interconnect.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: July 22, 2008
    Assignee: Intel Corporation
    Inventors: Jun He, Kevin J. Fischer, Ying Zhou, Peter K. Moon
  • Publication number: 20080157208
    Abstract: A method for forming a slot contact structure for transistor performance enhancement. A contact opening is formed to expose a contact region, and a slot contact is disposed within the contact opening in order to induce a stress on an adjacent channel region. In an embodiment, a stress inducing barrier plug is disposed within a portion of the contact opening and the remainder of the contact opening is filled with a lower resistivity contact metal. By selecting the proper materials and deposition parameters, the slot contact can be tuned to induce a tensile or compressive stress on the adjacent channel region, thus being applicable for both p-type and n-type devices.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Inventors: Kevin J. Fischer, Vinay B. Chikarmane, Brennan L. Peterson
  • Publication number: 20080157224
    Abstract: A method for forming a slot contact structure for n-type transistor performance enhancement. A slot contact opening is formed to expose a contact region, and a barrier plug is disposed within a portion of the slot contact opening in order to induce a tensile stress on an adjacent channel region. The remainder of the slot contact opening is filled with a lower resistivity contact metal. Barrier plug deposition temperature can be varied in order to tune the tensile stress on the adjacent channel region.
    Type: Application
    Filed: December 29, 2006
    Publication date: July 3, 2008
    Inventors: Kevin J. Fischer, Vinay B. Chikarmane, Brennan L. Peterson
  • Publication number: 20080076246
    Abstract: Embodiments of the invention include apparatuses and methods relating to through contact-opening silicide and barrier layer formation. In one embodiment, a silicide region is formed in a silicon substrate by deposition of a siliciding material in a contact opening and a subsequent anneal.
    Type: Application
    Filed: September 25, 2006
    Publication date: March 27, 2008
    Inventors: Brennan L. Peterson, Vinay B. Chikarmane, Kevin J. Fischer
  • Publication number: 20080014746
    Abstract: Copper interconnects may be made using the damascene process with reduced copper corrosion. Copper corrosion may be reduced by planarizing through excess copper down to, but not completely through, a copper diffusion barrier layer. The copper diffusion barrier layer may be removed using a different technique. Thereafter, suitable chemicals may be utilized to clean the structure.
    Type: Application
    Filed: July 14, 2006
    Publication date: January 17, 2008
    Inventors: Vinay B. Chikarmane, Kevin J. Fischer, Brennan L. Peterson