Patents by Inventor Kevin J. Torek

Kevin J. Torek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11908932
    Abstract: An apparatus includes at least one vertical transistor having a channel region. The channel region includes an upper region having a first width and a lower region below the upper region and having a second width smaller than the first width. The upper region defines at least one overhang portion extending laterally beyond the lower region. The at least one vertical transistor further includes gate electrodes at least partially vertically beneath the at least one overhang portion of the upper region of the channel region. Additional apparatuses and related systems and methods are also disclosed.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: February 20, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Kevin J. Torek, Kamal M. Karda, Yunfei Gao, Kamal K. Muthukrishnan
  • Patent number: 11652108
    Abstract: Some embodiments include an integrated assembly which includes a base structure. The base structure includes a series of conductive structures which extend along a first direction. The conductive structures have steps which alternate with recessed regions along the first direction. Pillars of semiconductor material are over the steps. The semiconductor material includes at least one element selected from Group 13 of the periodic table in combination with at least one element selected from Group 16 of the periodic table. The semiconductor material may be semiconductor oxide in some applications. Some embodiments include methods of forming integrated assemblies.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: May 16, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Sills, Yi Fang Lee, Kevin J. Torek
  • Publication number: 20230014320
    Abstract: An array of vertical transistors comprises spaced pillars of individual vertical transistors that individually comprise an upper source/drain region, a lower source/drain region, and a channel region vertically there-between. The upper source/drain region comprises a conductor oxide material in individual of the pillars. The channel region comprises an oxide semiconductor material in the individual pillars. The lower source/drain region comprises a first conductive oxide material in the individual pillars atop and directly against a second conductive oxide material in the individual pillars. Horizontally-elongated and spaced conductor lines individually interconnect a respective multiple of the vertical transistors in a column direction. The conductor lines individually comprise the second conductive oxide material atop and directly against metal material. The first conductive oxide material, the second conductive oxide material, and the metal material comprise different compositions relative one another.
    Type: Application
    Filed: September 19, 2022
    Publication date: January 19, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Yi Fang Lee, Jaydip Guha, Lars P. Heineck, Kamal M. Karda, Si-Woo Lee, Terrence B. McDaniel, Scott E. Sills, Kevin J. Torek, Sheng-Wei Yang
  • Patent number: 11488981
    Abstract: An array of vertical transistors comprises spaced pillars of individual vertical transistors that individually comprise an upper source/drain region, a lower source/drain region, and a channel region vertically there-between. The upper source/drain region comprises a conductor oxide material in individual of the pillars. The channel region comprises an oxide semiconductor material in the individual pillars. The lower source/drain region comprises a first conductive oxide material in the individual pillars atop and directly against a second conductive oxide material in the individual pillars. Horizontally-elongated and spaced conductor lines individually interconnect a respective multiple of the vertical transistors in a column direction. The conductor lines individually comprise the second conductive oxide material atop and directly against metal material. The first conductive oxide material, the second conductive oxide material, and the metal material comprise different compositions relative one another.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: November 1, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Yi Fang Lee, Jaydip Guha, Lars P. Heineck, Kamal M. Karda, Si-Woo Lee, Terrence B. McDaniel, Scott E. Sills, Kevin J. Torek, Sheng-Wei Yang
  • Publication number: 20220189828
    Abstract: A method of forming a semiconductor structure comprises forming an array of vertical thin film transistors. Forming the array of vertical thin film transistors comprises forming a source region, forming a channel material comprising an oxide semiconductor material over the source region, exposing the channel material to a dry etchant comprising hydrogen bromide to pattern the channel material into channel regions of adjacent vertical thin film transistor structures, forming a gate dielectric material on sidewalls of the channel regions, forming a gate electrode material adjacent to the gate dielectric material, and forming a drain region over the channel regions. Related methods of forming semiconductor structures and an array of memory cells are also disclosed.
    Type: Application
    Filed: March 2, 2022
    Publication date: June 16, 2022
    Inventor: Kevin J. Torek
  • Publication number: 20220109008
    Abstract: Some embodiments include an integrated assembly which includes a base structure. The base structure includes a series of conductive structures which extend along a first direction. The conductive structures have steps which alternate with recessed regions along the first direction. Pillars of semiconductor material are over the steps. The semiconductor material includes at least one element selected from Group 13 of the periodic table in combination with at least one element selected from Group 16 of the periodic table. The semiconductor material may be semiconductor oxide in some applications. Some embodiments include methods of forming integrated assemblies.
    Type: Application
    Filed: October 2, 2020
    Publication date: April 7, 2022
    Inventors: Scott E. Sills, Yi Fang Lee, Kevin J. Torek
  • Patent number: 11276613
    Abstract: A method of forming a semiconductor structure comprises forming an array of vertical thin film transistors. Forming the array of vertical thin film transistors comprises forming a source region, forming a channel material comprising an oxide semiconductor material over the source region, exposing the channel material to a dry etchant comprising hydrogen bromide to pattern the channel material into channel regions of adjacent vertical thin film transistor structures, forming a gate dielectric material on sidewalls of the channel regions, forming a gate electrode material adjacent to the gate dielectric material, and forming a drain region over the channel regions. Related methods of forming semiconductor structures and an array of memory cells are also disclosed.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: March 15, 2022
    Assignee: Micron Technology, Inc.
    Inventor: Kevin J. Torek
  • Publication number: 20220028903
    Abstract: An array of vertical transistors comprises spaced pillars of individual vertical transistors that individually comprise an upper source/drain region, a lower source/drain region, and a channel region vertically there-between. The upper source/drain region comprises a conductor oxide material in individual of the pillars. The channel region comprises an oxide semiconductor material in the individual pillars. The lower source/drain region comprises a first conductive oxide material in the individual pillars atop and directly against a second conductive oxide material in the individual pillars. Horizontally-elongated and spaced conductor lines individually interconnect a respective multiple of the vertical transistors in a column direction. The conductor lines individually comprise the second conductive oxide material atop and directly against metal material. The first conductive oxide material, the second conductive oxide material, and the metal material comprise different compositions relative one another.
    Type: Application
    Filed: July 21, 2020
    Publication date: January 27, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Yi Fang Lee, Jaydip Guha, Lars P. Heineck, Kamal M. Karda, Si-Woo Lee, Terrence B. McDaniel, Scott E. Sills, Kevin J. Torek, Sheng-Wei Yang
  • Publication number: 20220029015
    Abstract: An apparatus includes at least one vertical transistor having a channel region. The channel region includes an upper region having a first width and a lower region below the upper region and having a second width smaller than the first width. The upper region defines at least one overhang portion extending laterally beyond the lower region. The at least one vertical transistor further includes gate electrodes at least partially vertically beneath the at least one overhang portion of the upper region of the channel region. Additional apparatuses and related systems and methods are also disclosed.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Inventors: Fatma Arzum Simsek-Ege, Kevin J. Torek, Kamal M. Karda, Yunfei Gao, Kamal K. Muthukrishnan
  • Publication number: 20200335405
    Abstract: A method of forming a semiconductor structure comprises forming an array of vertical thin film transistors. Forming the array of vertical thin film transistors comprises forming a source region, forming a channel material comprising an oxide semiconductor material over the source region, exposing the channel material to a dry etchant comprising hydrogen bromide to pattern the channel material into channel regions of adjacent vertical thin film transistor structures, forming a gate dielectric material on sidewalls of the channel regions, forming a gate electrode material adjacent to the gate dielectric material, and forming a drain region over the channel regions. Related methods of forming semiconductor structures and an array of memory cells are also disclosed.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventor: Kevin J. Torek
  • Patent number: 10714400
    Abstract: A method of forming a semiconductor structure comprises forming an array of vertical thin film transistors. Forming the array of vertical thin film transistors comprises forming a source region, forming a channel material comprising an oxide semiconductor material over the source region, exposing the channel material to a dry etchant comprising hydrogen bromide to pattern the channel material into channel regions of adjacent vertical thin film transistor structures, forming a gate dielectric material on sidewalls of the channel regions, forming a gate electrode material adjacent to the gate dielectric material, and forming a drain region over the channel regions. Related methods of forming semiconductor structures and an array of memory cells are also disclosed.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: July 14, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Kevin J. Torek
  • Publication number: 20190067453
    Abstract: A method of forming a semiconductor structure comprises forming an array of vertical thin film transistors. Forming the array of vertical thin film transistors comprises forming a source region, forming a channel material comprising an oxide semiconductor material over the source region, exposing the channel material to a dry etchant comprising hydrogen bromide to pattern the channel material into channel regions of adjacent vertical thin film transistor structures, forming a gate dielectric material on sidewalls of the channel regions, forming a gate electrode material adjacent to the gate dielectric material, and forming a drain region over the channel regions. Related methods of forming semiconductor structures and an array of memory cells are also disclosed.
    Type: Application
    Filed: August 28, 2018
    Publication date: February 28, 2019
    Inventor: Kevin J. Torek
  • Patent number: 9799658
    Abstract: A method of forming capacitors includes providing first capacitor electrodes within support material. The first capacitor electrodes contain TiN and the support material contains polysilicon. The polysilicon-containing support material is dry isotropically etched selectively relative to the TiN-containing first capacitor electrodes using a sulfur and fluorine-containing etching chemistry. A capacitor dielectric is formed over sidewalls of the first capacitor electrodes and a second capacitor electrode is formed over the capacitor dielectric. Additional methods are disclosed.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: October 24, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Gurpreet Lugani, Kevin J. Torek
  • Patent number: 9583381
    Abstract: Methods of forming semiconductor devices and features in semiconductor device structures include conducting an anti-spacer process to remove portions of a first mask material to form first openings extending in a first direction. Another anti-spacer process is conducted to remove portions of the first mask material to form second openings extending in a second direction at an angle to the first direction. Portions of a second mask material underlying the first mask material at intersections of the first openings and second openings are removed to form holes in the second mask material and to expose a substrate underlying the second mask material.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: February 28, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Ranjan Khurana, Michael Hyatt, Scott L. Light, Kevin J. Torek, Anton J. deVilliers
  • Publication number: 20160055973
    Abstract: A method of forming capacitors includes providing first capacitor electrodes within support material. The first capacitor electrodes contain TiN and the support material contains polysilicon. The polysilicon-containing support material is dry isotropically etched selectively relative to the TiN-containing first capacitor electrodes using a sulfur and fluorine-containing etching chemistry. A capacitor dielectric is formed over sidewalls of the first capacitor electrodes and a second capacitor electrode is formed over the capacitor dielectric. Additional methods are disclosed.
    Type: Application
    Filed: November 3, 2015
    Publication date: February 25, 2016
    Inventors: Gurpreet Lugani, Kevin J. Torek
  • Patent number: 9196673
    Abstract: A method of forming capacitors includes providing first capacitor electrodes within support material. The first capacitor electrodes contain TiN and the support material contains polysilicon. The polysilicon-containing support material is dry isotropically etched selectively relative to the TiN-containing first capacitor electrodes using a sulfur and fluorine-containing etching chemistry. A capacitor dielectric is formed over sidewalls of the first capacitor electrodes and a second capacitor electrode is formed over the capacitor dielectric. Additional methods are disclosed.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: November 24, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Gurpreet Lugani, Kevin J. Torek
  • Patent number: 8981444
    Abstract: Novel etch techniques are provided for shaping silicon features below the photolithographic resolution limits. FinFET devices are defined by recessing oxide and exposing a silicon protrusion to an isotropic etch, at least in the channel region. In one implementation, the protrusion is contoured by a dry isotropic etch having excellent selectivity, using a downstream microwave plasma etch.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: March 17, 2015
    Assignee: Round Rock Research, LLC
    Inventors: Kevin J. Torek, Mark Fischer, Robert J. Hanson
  • Publication number: 20140370684
    Abstract: Methods of forming semiconductor devices and features in semiconductor device structures include conducting an anti-spacer process to remove portions of a first mask material to form first openings extending in a first direction. Another anti-spacer process is conducted to remove portions of the first mask material to form second openings extending in a second direction at an angle to the first direction. Portions of the second mask material underlying the first mask material at intersections of the first openings and second openings are removed to form holes in the second mask material and to expose a substrate underlying the second mask material.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Ranjan Khurana, Michael Hyatt, Scott L. Light, Kevin J. Torek, Anton J. deVilliers
  • Patent number: 8889558
    Abstract: A method of forming a pattern on a substrate includes forming openings in material of a substrate. The openings are widened to join with immediately adjacent of the openings to form spaced pillars comprising the material after the widening. Other embodiments are disclosed.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: November 18, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Ranjan Khurana, Anton J. deVillers, Kevin J. Torek, Shane J. Trapp, Scott L. Light, James M. Buntin
  • Publication number: 20140162458
    Abstract: A method of forming a pattern on a substrate includes forming openings in material of a substrate. The openings are widened to join with immediately adjacent of the openings to form spaced pillars comprising the material after the widening. Other embodiments are disclosed.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Ranjan Khurana, Anton J. DeVillers, Kevin J. Torek, Shane J. Trapp, Scott L. Light, James M. Buntin