Patents by Inventor Kevin K. Chan

Kevin K. Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180197961
    Abstract: A field effect transistor is provided which includes a plurality of fins, at least a portion of a given fin including a respective source region, and a raised source disposed at least partially on the fins and including III-V material. The field effect transistor further includes a diffusion barrier disposed at least partially on the raised source and including transition metal bonded with silicon or germanium, and a gate stack capacitively coupled at least to the respective source regions of the fins.
    Type: Application
    Filed: March 9, 2018
    Publication date: July 12, 2018
    Inventors: Kevin K. Chan, Cheng-Wei Cheng, Jack Oon Chu, Yanning Sun, Jeng-Bang Yau
  • Publication number: 20180108763
    Abstract: After forming a trench extending through an insulator layer and an underlying top semiconductor portion that is comprised of a first semiconductor material and a dopant of a first conductivity type to define an emitter and a collector on opposite sides of the trench in the top semiconductor portion, an intrinsic base comprising a second semiconductor material having a bandgap less than a bandgap of the first semiconductor material and a dopant of a second conductivity type opposite the first conductivity type is formed in a lower portion the trench by selective epitaxial growth. The intrinsic base protrudes above the top semiconductor portion and is laterally surrounded by entire top semiconductor portion and a portion of the insulator layer. An extrinsic base is then formed on top of the intrinsic base to fill a remaining volume of the trench by a deposition process.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 19, 2018
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau
  • Publication number: 20180108778
    Abstract: A finFET structure, and method of forming such structure, in which a germanium enriched nanowire is located in the channel region of the FET, while simultaneously having silicon-germanium fin in the source/drain region of the finFET.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 19, 2018
    Inventors: Kevin K. Chan, Pouya Hashemi, Ali Khakifirooz, John A. Ott, Alexander Reznicek
  • Patent number: 9947755
    Abstract: A method is presented for forming a diffusion barrier in a field effect transistor with a source. A raised source is formed at least partially on the source with the raised source including III-V material. An interfacial layer is formed at least partially on the raised source with the interfacial layer including silicon or germanium. A metal layer is formed at least partially on the interfacial layer with the metal layer including transition metal. The diffusion barrier is formed at least partially on the raised source with the diffusion barrier layer including transition metal from the metal layer bonded to silicon or germanium from the interfacial layer. Similar processing forms a corresponding diffusion barrier on a raised drain.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: April 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Cheng-Wei Cheng, Jack Oon Chu, Yanning Sun, Jeng-Bang Yau
  • Patent number: 9947677
    Abstract: A memory array includes an N×M array of memory cells, each memory cell having a first transistor connected to a first terminal and a second transistor connected in parallel to the first transistor and a second terminal, where the first and second transistors share a common floating gate and a common output node. Each memory cell further includes an access transistor connected in series to the common output node and a low voltage terminal, the access transistor configured to trigger hot-carrier injection to the common floating gate to change a voltage of the common floating gate. The first transistor is an n-type transistor and the second transistor is a p-type transistor.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: April 17, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Bahman Hekmatshoartabari, Tak H. Ning, Jeng-bang Yau
  • Publication number: 20180096885
    Abstract: After forming source/drain contact openings to expose portions of source/drain regions composed of an n-doped III-V compound semiconductor material, surfaces of the exposed portions of the source/drain regions are cleaned to remove native oxides and doped with plasma-generated n-type dopant radicals. Semiconductor caps are formed in-situ on the cleaned surfaces of the source/drain regions, and subsequently converted into metal semiconductor alloy regions. Source/drain contacts are then formed on the metal semiconductor alloy regions and within the source/drain contact openings.
    Type: Application
    Filed: October 4, 2016
    Publication date: April 5, 2018
    Inventors: Kevin K. Chan, Sebastian U. Engelmann, Marinus Johannes Petrus Hopstaken, Christopher Scerbo, Hongwen Yan, Yu Zhu
  • Publication number: 20180096893
    Abstract: A method for forming a semiconductor device includes forming a III-V semiconductor substrate and forming a gate structure on the III-V semiconductor substrate. The method also includes forming a thin spacer surrounding the gate structure and forming a source/drain junction with a first doped III-V material at an upper surface of the III-V semiconductor substrate. The method also includes oxidizing a surface the source/drain forming an oxidation layer; removing natural oxides from the oxidation layer on a surface of the source/drain to expose ions of the first doped III-V material at least at a surface of the source/drain. The method further includes applying a second doping to the source/drain to increase a doping concentration of the first doped III-V material, forming metal contacts at least at the second doped surface of the source/drain; and then annealing the contact.
    Type: Application
    Filed: April 18, 2017
    Publication date: April 5, 2018
    Inventors: Takashi Ando, Kevin K. Chan, John Rozen, Jeng-Bang Yau, Yu Zhu
  • Publication number: 20180040723
    Abstract: Semiconductor structure including germanium-on-insulator lateral bipolar junction transistors and methods of fabricating the same generally include formation of a silicon passivation layer at an interface between the insulator layer and a germanium layer.
    Type: Application
    Filed: August 16, 2017
    Publication date: February 8, 2018
    Inventors: Kevin K. Chan, Tak H. Ning, Jeng-Bang Yau
  • Patent number: 9887278
    Abstract: After forming a trench extending through an insulator layer and an underlying top semiconductor portion that is comprised of a first semiconductor material and a dopant of a first conductivity type to define an emitter and a collector on opposite sides of the trench in the top semiconductor portion, an intrinsic base comprising a second semiconductor material having a bandgap less than a bandgap of the first semiconductor material and a dopant of a second conductivity type opposite the first conductivity type is formed in a lower portion the trench by selective epitaxial growth. The intrinsic base protrudes above the top semiconductor portion and is laterally surrounded by entire top semiconductor portion and a portion of the insulator layer. An extrinsic base is then formed on top of the intrinsic base to fill a remaining volume of the trench by a deposition process.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: February 6, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Kevin K. Chan, Christopher P. D'Emic, Tak H. Ning, Jeng-Bang Yau
  • Patent number: 9865737
    Abstract: A finFET structure, and method of forming such structure, in which a germanium enriched nanowire is located in the channel region of the FET, while simultaneously having silicon-germanium fin in the source/drain region of the finFET.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: January 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Pouya Hashemi, Ali Khakifirooz, John A. Ott, Alexander Reznicek
  • Publication number: 20170373149
    Abstract: A method for forming an overlap transistor includes forming a gate structure over a III-V material, wet cleaning the III-V material on side regions adjacent to the gate structure and plasma cleaning the III-V material on the side regions adjacent to the gate structure. The III-V material is plasma doped on the side regions adjacent to the gate structure to form plasma doped extension regions that partially extend below the gate structure.
    Type: Application
    Filed: June 28, 2016
    Publication date: December 28, 2017
    Inventors: Robert L. Bruce, Kevin K. Chan, Sebastian U. Engelmann, Renee T. Mo, Christopher Scerbo, Hongwen Yan, Jeng-Bang Yau
  • Patent number: 9852938
    Abstract: After forming an epitaxial germanium layer over a germanium-on-insulator substrate including an insulator layer and a doped germanium layer overlying the insulator layer, the doped germanium layer is selectively removed and a passivation layer is formed within a space between the epitaxial germanium layer and the insulator layer that is formed by removal of the doped germanium layer. A lateral bipolar transistor is subsequently formed in the epitaxial germanium layer.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: December 26, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Tak H. Ning, Jeng-Bang Yau
  • Patent number: 9853109
    Abstract: A method is presented for forming a diffusion barrier in a field effect transistor with a source. A raised source is formed at least partially on the source with the raised source comprising III-V material. An interfacial layer is formed at least partially on the raised source with the interfacial layer comprising silicon or germanium. A metal layer is formed at least partially on the interfacial layer with the metal layer comprising transition metal. The diffusion barrier is formed at least partially on the raised source with the diffusion barrier layer comprising transition metal from the metal layer bonded to silicon or germanium from the interfacial layer. Similar processing forms a corresponding diffusion barrier on a raised drain.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: December 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Cheng-Wei Cheng, Jack Oon Chu, Yanning Sun, Jeng-Bang Yau
  • Patent number: 9799756
    Abstract: Semiconductor structure including germanium-on-insulator lateral bipolar junction transistors and methods of fabricating the same generally include formation of a silicon passivation layer at an interface between the insulator layer and a germanium layer.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: October 24, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Tak H. Ning, Jeng-Bang Yau
  • Publication number: 20170301755
    Abstract: A lateral bipolar junction transistor (LBJT) device that may include a dielectric stack including a pedestal of a base region passivating dielectric and a nucleation dielectric layer; and a base region composed of a germanium containing material or a type III-V semiconductor material in contact with the pedestal of the base region passivating dielectric. An emitter region and collector region may be present on opposing sides of the base region contacting a sidewall of the pedestal of the base region passivating dielectric and an upper surface of the nucleation dielectric layer.
    Type: Application
    Filed: May 9, 2017
    Publication date: October 19, 2017
    Inventors: Kevin K. Chan, Pouya Hashemi, Tak H. Ning, Alexander Reznicek
  • Publication number: 20170301756
    Abstract: A lateral bipolar junction transistor (LBJT) device that may include a dielectric stack including a pedestal of a base region passivating dielectric and a nucleation dielectric layer; and a base region composed of a germanium containing material or a type III-V semiconductor material in contact with the pedestal of the base region passivating dielectric. An emitter region and collector region may be present on opposing sides of the base region contacting a sidewall of the pedestal of the base region passivating dielectric and an upper surface of the nucleation dielectric layer.
    Type: Application
    Filed: May 9, 2017
    Publication date: October 19, 2017
    Inventors: Kevin K. Chan, Pouya Hashemi, Tak H. Ning, Alexander Reznicek
  • Patent number: 9773865
    Abstract: A method of forming a self-forming spacer using oxidation. The self-forming spacer may include forming a fin field effect transistor on a substrate, the fin field effect transistor includes a gate on a fin, the gate is perpendicular to the fin; forming a gate spacer on the gate and a fin spacer on the fin, the gate spacer and the fin spacer are formed in a single step by oxidizing an exposed surface of the gate and an exposed surface of the fin; and removing the fin spacer from the fin.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: September 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Masaharu Kobayashi, Effendi Leobandung
  • Patent number: 9773894
    Abstract: A lateral bipolar junction transistor including a base region on a dielectric substrate layer. The base region includes a layered stack of alternating material layers of a first lattice dimension semiconductor material and a second lattice dimension semiconductor material. The first lattice dimension semiconductor material is different from the second lattice dimension semiconductor material to provide a strained base region. A collector region is present on the dielectric substrate layer in contact with a first side of the base region. An emitter region is present on the dielectric substrate in contact with a second side of the base region that is opposite the first side of the base region.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: September 26, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Bahman Hekmatshoartabari, Tak H. Ning
  • Publication number: 20170263702
    Abstract: A method of forming a self-forming spacer using oxidation. The self-forming spacer may include forming a fin field effect transistor on a substrate, the fin field effect transistor includes a gate on a fin, the gate is perpendicular to the fin; forming a gate spacer on the gate and a fin spacer on the fin, the gate spacer and the fin spacer are formed in a single step by oxidizing an exposed surface of the gate and an exposed surface of the fin; and removing the fin spacer from the fin.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventors: Kevin K. Chan, Masaharu Kobayashi, Effendi Leobandung
  • Patent number: 9752251
    Abstract: A self-limiting selective epitaxy process can be employed on a plurality of semiconductor fins such that the sizes of raised active semiconductor regions formed by the selective epitaxy process are limited to dimensions determined by the sizes of the semiconductor fins. Specifically, the self-limiting selective epitaxy process limits growth of the semiconductor material along directions that are perpendicular to crystallographic facets formed during the selective epitaxy process. Once the crystallographic facets become adjoined to one another or to a dielectric surface, growth of the semiconductor material terminates, thereby preventing merger among epitaxially deposited semiconductor materials.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: September 5, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Eric C. Harley, Yue Ke, Annie Levesque