Patents by Inventor Kevin R. Seifert
Kevin R. Seifert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10765858Abstract: A lead body having a defibrillation electrode positioned along a distal portion of the lead body is described. The defibrillation electrode includes a plurality of electrode segments spaced a distance apart from each other. At least one of the plurality of defibrillation electrode segments includes at least one coated portion and at least one uncoated portion. The at least one coated portion is coated with an electrically insulating material configured to prevent transmission of a low voltage signal (e.g., a pacing pulse) while allowing transmission of a high voltage signal (e.g., a cardioversion defibrillation shock). The at least one uncoated portion is configured to transmit both low voltage and high voltage signals. The lead may also include one or more discrete electrodes proximal, distal or between the defibrillation electrode segments.Type: GrantFiled: April 24, 2015Date of Patent: September 8, 2020Assignee: Medtronic, Inc.Inventors: Mark T. Marshall, Amy E. Thompson-Nauman, Melissa G. T. Christie, Gonzalo Martinez, Kevin R. Seifert
-
Publication number: 20200222689Abstract: A fixation mechanism of an implantable lead includes a plurality of depressions of an outermost surface of the lead and a relatively flexible sleeve mounted around the outermost surface. The depressions are spaced apart from one another along a length, and each extends circumferentially, wherein a longitudinal center-to-center spacing between each adjacent depression is uniform along the length, and each depression is of substantially the same size. The sleeve has an internal surface in sliding engagement with the outermost surface of the lead, and an external surface, in which suture grooves are formed. A longitudinal center-to-center spacing between adjacent suture grooves may be substantially the same as, or a multiple of, the longitudinal center-to-center spacing between adjacent depressions of the outermost surface of the lead. The sleeve may also include a ridge protruding from the internal surface, aligned with, or offset (by center-to-center spacing of depressions) from, the grooves.Type: ApplicationFiled: March 30, 2020Publication date: July 16, 2020Inventors: Kevin R. SEIFERT, Maggie J. PISTELLA, Thomas D. BROSTROM, Keith D. ANDERSON, Gareth MORGAN
-
Patent number: 10675478Abstract: This disclosure describes an implantable medical electrical lead and an ICD system utilizing the lead. The lead includes a lead body defining a proximal end and a distal portion, wherein at least a part of the distal portion of the lead body defines an undulating configuration. The lead includes a defibrillation electrode that includes a plurality of defibrillation electrode segments disposed along the undulating configuration spaced apart from one another by a distance. The lead also includes at least one electrode disposed between adjacent sections of the plurality of defibrillation sections. The at least one electrode is configured to deliver a pacing pulse to the heart and/or sense cardiac electrical activity of the heart.Type: GrantFiled: December 9, 2015Date of Patent: June 9, 2020Assignee: Medtronic, Inc.Inventors: Mark T. Marshall, Gonzalo Martinez, Vladimir P. Nikolski, Nathan L. Olson, Kevin R. Seifert, Teresa A. Whitman
-
Publication number: 20200101279Abstract: A device for delivering an implantable medical device (IMD) includes an elongated member and a deployment bay configured to house the IMD, the deployment bay defining a distal opening for deploying the IMD out of the deployment bay. The device includes a first electrode located inside the deployment bay during intravascular navigation, a second electrode, and impedance detection circuitry configured to deliver an electrical signal to a path between the first electrode and the second electrode through at least one of a fluid or tissue of the patient. The device also includes processing circuitry configured to determine an impedance of the path based on the signal and control a user interface to indicate when an impedance of the path indicates that at least one of the IMD or the distal opening is in a fixation configuration relative to the target site of the patient.Type: ApplicationFiled: September 28, 2018Publication date: April 2, 2020Inventors: Ronald A. Drake, Kathryn Hilpisch, Kevin R. Seifert, William Schindeldecker, Stephanie Koppes, Brian P. Colin, Alexander R. Mattson
-
Patent number: 10603483Abstract: A fixation mechanism of an implantable lead includes a plurality of depressions of an outermost surface of the lead and a relatively flexible sleeve mounted around the outermost surface. The depressions are spaced apart from one another along a length, and each extends circumferentially, wherein a longitudinal center-to-center spacing between each adjacent depression is uniform along the length, and each depression is of substantially the same size. The sleeve has an internal surface in sliding engagement with the outermost surface of the lead, and an external surface, in which suture grooves are formed. A longitudinal center-to-center spacing between adjacent suture grooves may be substantially the same as, or a multiple of, the longitudinal center-to-center spacing between adjacent depressions of the outermost surface of the lead. The sleeve may also include a ridge protruding from the internal surface, aligned with, or offset (by center-to-center spacing of depressions) from, the grooves.Type: GrantFiled: April 25, 2017Date of Patent: March 31, 2020Assignee: Medtronic, Inc.Inventors: Kevin R. Seifert, Maggie J. Pistella, Thomas D. Brostrom, Keith D. Anderson, Gareth Morgan
-
Patent number: 10531893Abstract: Implant tools and techniques for implantation of a medical lead, catheter or other implantable component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in extravascular locations, including subcutaneous locations. An example implant tool for implanting a medical lead includes a rod having a handle and a shaft, and a sheath configured to be placed on the shaft of the rod. The sheath includes a body having proximal end and a distal, a channel formed by the body, the channel extending from the proximal end to the distal end of the body, and an opening that extends along the body of the sheath from the proximal end to the distal end, wherein the channel is accessible via the opening.Type: GrantFiled: March 4, 2014Date of Patent: January 14, 2020Assignee: Medtronic, Inc.Inventors: Kevin R. Seifert, Roger A. Christopherson, Nathan L. Olson, Rebecca L. Poindexter
-
Patent number: 10535446Abstract: A joint between an insulative sidewall of a medical electrical lead subassembly and an underlying fluoropolymer layer includes an interfacial layer. A first section of the interfacial layer is bonded to the fluoropolymer layer and is formed by a thermoplastic fluoropolymer; a second section of the interfacial layer extends adjacent the first section and is bonded to the insulative sidewall. The insulative sidewall, of the subassembly, and the second section, of the interfacial layer, are each formed from a material that is not a fluoropolymer. A recess is formed in the first section of the interfacial layer and the second section of the interfacial layer extends within the recess.Type: GrantFiled: August 8, 2016Date of Patent: January 14, 2020Assignee: Medtronic, Inc.Inventors: Kevin R. Seifert, Kathleen M. Grenz
-
Patent number: 10463853Abstract: An implantable medical device includes ventricular and atrial portions, and a flexible leadlet that extends therebetween. An open channel of the atrial portion, formed along a core thereof, is sized to receive the leadlet therein, when the leadlet is folded over on itself. An interventional medical system includes the device and a delivery tool; a tubular sidewall of the tool defines a lumen and has a tether extending therein. A slot formed in the sidewall extends proximally from an open end thereof, coincident with a distal opening of the lumen. When the atrial portion is contained within the lumen, a segment of the leadlet extends alongside the atrial portion; another segment of the leadlet, being folded over on itself, proximal to the atrial portion, has the tether engaged therewith. The slot may allow passage of the leadlet therethrough, when the atrial portion is positioned for deployment through the distal opening.Type: GrantFiled: January 19, 2017Date of Patent: November 5, 2019Assignee: Medtronic, Inc.Inventors: Ronald A Drake, Xin Chen, Michael D Eggen, Matthew D Bonner, Vladimir Grubac, Brian P Colin, Kenneth C Gardeski, Kevin R Seifert
-
Patent number: 10398471Abstract: Implant tools and techniques for implantation of a medical lead, catheter or other implantable component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in extravascular locations, including subcutaneous locations. An example implant tool for implanting a medical lead includes a rod and a sheath configured to be placed on the rod. The rod includes a handle, a shaft having a proximal end adjacent to the handle and a distal end, and an attachment feature toward the distal end of the shaft, the attachment feature configured to couple to the medical lead. The sheath is configured to be placed in multiple positions along the rod including a first position in which the sheath does not interact with the attachment feature and second position in which the sheath does interact with the attachment feature.Type: GrantFiled: April 3, 2017Date of Patent: September 3, 2019Assignee: Medtronic, Inc.Inventors: Kevin R. Seifert, Roger A. Christopherson, Nathan L. Olson, Rebecca L. Poindexter
-
Publication number: 20190255314Abstract: An implantable medical therapy delivery device includes a non-conductive filament extending along a length of an outer surface of an insulative body of the device, wherein the filament includes a plurality of fixation projections and is secured to the outer surface of the insulative body such that the projections protrude outward from the outer surface and are spaced apart from one another along the length of the outer surface. The filament may be wound about the length with an open pitch. In some cases, the insulative body includes an open-work member forming at least a portion of the outer surface thereof, and the filament may be interlaced with the open-work member. In these cases, the filament may be bioabsorbable, for example, to provide only acute fixation via the projections thereof, while the open-work member provides a structure for tissue ingrowth and, thus, more permanent or chronic fixation.Type: ApplicationFiled: May 6, 2019Publication date: August 22, 2019Inventors: Kevin R. Seifert, Nathan L. Olson
-
Patent number: 10349978Abstract: This disclosure provides various embodiments of implant tools and implant techniques utilizing those tools. In one embodiment, an implant tool comprises a handle and a shaft. The shaft includes a proximal end adjacent the handle, a distal end, an open channel that extends from near the proximal end to the distal end, and at least one lumen that extends from a proximal end of the shaft to a location near the distal end of the shaft. The implant tool may also include a coupler configured to connect to a fluid delivery device. In one example, the fluid delivery device may be a syringe. In some instances, the handle of the implant tool may include a compartment or a recess configured to receive the fluid delivery device.Type: GrantFiled: December 18, 2015Date of Patent: July 16, 2019Assignee: Medtronic, Inc.Inventors: Kevin R. Seifert, Nathan L. Olson, Becky L. Dolan
-
Patent number: 10279165Abstract: An implantable medical therapy delivery device includes a non-conductive filament extending along a length of an outer surface of an insulative body of the device, wherein the filament includes a plurality of fixation projections and is secured to the outer surface of the insulative body such that the projections protrude outward from the outer surface and are spaced apart from one another along the length of the outer surface. The filament may be wound about the length with an open pitch. In some cases, the insulative body includes an open-work member forming at least a portion of the outer surface thereof, and the filament may be interlaced with the open-work member. In these cases, the filament may be bioabsorbable, for example, to provide only acute fixation via the projections thereof, while the open-work member provides a structure for tissue ingrowth and, thus, more permanent or chronic fixation.Type: GrantFiled: April 26, 2018Date of Patent: May 7, 2019Assignee: Medtronic, Inc.Inventors: Kevin R. Seifert, Nathan L. Olson
-
Publication number: 20190126034Abstract: Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.Type: ApplicationFiled: October 26, 2018Publication date: May 2, 2019Inventors: Ronald A. Drake, Kenneth C. Gardeski, Carla Pfeiffer, Kevin R. Seifert, Lester O. Stener, Matthew D. Bonner
-
Publication number: 20190076646Abstract: Methods and systems of making a medical electrical lead type having a set of tines. A system for implantation of a lead medical electrical lead in contact with heart tissue, comprises an elongated lead body; a set of curved tines mounted to and extending from a distal end of the lead body, the tines having a length (dD) and an effective cross sectional area, and a delivery catheter. The delivery catheter encloses the lead body and has a distal capsule portion enclosing the tines. The tines exerting a spring force against the capsule and provide a stored potential energy. The delivery catheter has an elastic, not stiff and low column strength ejection means for advancing the lead and tines distally from the capsule and fixating the tines within the heart tissue, the controllable and the stored potential energy of the tines together provide a deployment energy. The tines when so fixated in the tissue provide a fixation energy. The deployment energy and the fixation energy of the tines are equivalent.Type: ApplicationFiled: November 8, 2018Publication date: March 14, 2019Inventors: Michael D. Eggen, Kevin R. Seifert, Vladimir Grubac
-
Patent number: 10159834Abstract: Methods and systems for positioning a leadless pacing device (LPD) in cardiac tissue are disclosed. A delivery device is employed that comprises a proximal end, a distal end and a lumen therebetween sized to receive the LPD. The LPD has a leadlet extending therefrom that includes a means to fixate the leadlet to tissue. The delivery device comprises an introducer to introduce the LPD into the lumen of the delivery device. The LPD is loaded in the distal end of the lumen of the delivery device. The leadlet extends proximally from the LPD while the fixation means extends distally toward the LPD. A LPD mover is configured to advance the LPD out of the delivery device. A leadlet mover is configured to advance the leadlet out of the lumen delivery device and cause the leadlet to engage with cardiac tissue.Type: GrantFiled: January 26, 2017Date of Patent: December 25, 2018Assignee: Medtronic, Inc.Inventors: Ronald A Drake, Kenneth C Gardeski, Carla Pfeiffer, Kevin R Seifert, Lester O Stener, Matthew D Bonner
-
Patent number: 10143838Abstract: Methods and systems of making a medical electrical lead type having a set of tines. A system for implantation of a lead medical electrical lead in contact with heart tissue, comprises an elongated lead body; a set of curved tines mounted to and extending from a distal end of the lead body, the tines having a length (dD) and an effective cross sectional area, and a delivery catheter. The delivery catheter encloses the lead body and has a distal capsule portion enclosing the tines. The tines exerting a spring force against the capsule and provide a stored potential energy. The delivery catheter has an elastic, not stiff and low column strength ejection means for advancing the lead and tines distally from the capsule and fixating the tines within the heart tissue, the controllable and the stored potential energy of the tines together provide a deployment energy. The tines when so fixated in the tissue provide a fixation energy. The deployment energy and the fixation energy of the tines are equivalent.Type: GrantFiled: May 13, 2016Date of Patent: December 4, 2018Assignee: Medtronic, Inc.Inventors: Vladimir Grubac, Michael D Eggen, Kevin R Seifert
-
Patent number: 10118027Abstract: Implant tools and techniques for implantation of a medical lead, catheter or other component are provided. The implant tools and techniques are particularly useful in implanting medical electrical leads in extravascular locations, including subcutaneous locations. An implant tool for implanting a medical lead may include a shaft having a proximal end, a distal end, an open channel that extends from near the proximal end to the distal end, and an attachment feature configured to couple to the medical lead. Such an implant tool provides a user with the versatility to use the same implant tool to either pull the lead through a tunnel formed via the implant tool or push the lead through the tunnel via the open channel in the implant tool.Type: GrantFiled: February 28, 2014Date of Patent: November 6, 2018Assignee: Medtronic, Inc.Inventors: Kevin R. Seifert, Nathan L. Olson, Rebecca L. Poindexter
-
Publication number: 20180280058Abstract: An improved assembly for securing an implantable medical device for retrieval from an implant site includes a plurality of snares, wherein distal openings of a first snare carrier lumen and a second snare carrier lumen have a pre-set offset established therebetween. First and second snare shafts, to which first and second snare loops are coupled, respectively, extend within the corresponding snare carrier lumens such that each loop is located in proximity to the corresponding distal opening of the lumen. The pre-set offset allows an operator to simultaneously position the snare loops around the device; and, when the operator retracts the snare shafts to collapse the snare loops until the loops fit snuggly around the device, the pre-set offset can help to align the device for retrieval.Type: ApplicationFiled: March 29, 2018Publication date: October 4, 2018Inventors: Colin W. MEADE, Paula MCDONNELL, Francis D. MCEVOY, Rónán WOOD, Kealan E. O'CARROLL, Kenneth C. GARDESKI, Ronald A. DRAKE, Kevin R. SEIFERT, Brian P. COLIN, Pierce VATTEROTT
-
Publication number: 20180280057Abstract: A tethering assembly for securing a medical device includes a shaft and a wire that extends in sliding engagement within a proximal lumen, a channel, and a distal receptacle of the shaft. A retainer zone of the shaft, through which the channel extends, stops a transition segment of the wire, which extends between a proximal and a distal segment of the wire, from moving into the shaft receptacle, thereby restraining a distal-most tip of the wire from moving through a distal-most opening of the receptacle. When a projecting member of the device has entered a secure zone of the receptacle, via movement through the distal-most opening and a tapering passageway thereof, the distal-most tip of the wire, which may be spring-biased, can move distally into the passageway so that the tip blocks the projecting member from moving distally, back through the passageway.Type: ApplicationFiled: March 29, 2018Publication date: October 4, 2018Inventors: Kevin R. SEIFERT, Vania LEE, Linda L. FRANKE, Lonnie D. RONNING, Dina L. WILLIAMS, Michael D. EGGEN, Carla C. PFEIFFER
-
Patent number: 10086189Abstract: A medical device lead. The lead includes one or more jacketed conductive elements. The jacket comprises one or more covers. A first cover of polyether ketone (PEEK) is in direct contact with the at least one conductive element. At least one conductive element and a PEEK cover are coiled. The coiled conductive element can substantially retain its original coiled shape.Type: GrantFiled: August 12, 2011Date of Patent: October 2, 2018Assignee: Medtronic, Inc.Inventors: Gregory A. Boser, Kevin R. Seifert, Greg Garlough