Patents by Inventor Ki Bum Nam

Ki Bum Nam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150221822
    Abstract: Exemplary embodiments of the present invention disclose a light emitting diode including an n-type contact layer doped with silicon, a p-type contact layer, an active region disposed between the n-type contact layer and the p-type contact layer, a superlattice layer disposed between the n-type contact layer and the active region, the superlattice layer including a plurality of layers, an undoped intermediate layer disposed between the superlattice layer and the n-type contact layer, and an electron reinforcing layer disposed between the undoped intermediate layer and the superlattice layer. Only a final layer of the super lattice layer closest to the active region is doped with silicon, and the silicon doping concentration of the final layer is higher than that of the n-type contact layer.
    Type: Application
    Filed: April 17, 2015
    Publication date: August 6, 2015
    Inventors: Kwang Joong Kim, Chang Suk Han, Kyung Hee Ye, Seung Kyu Choi, Ki Bum Nam, Nam Yoon Kim, Kyung Hae Kim, Ju Hyung Yoon
  • Patent number: 9054231
    Abstract: A method of fabricating a semiconductor device using gang bonding and a semiconductor device fabricated by the same, the method comprising preparing a support substrate having a plurality of semiconductor stack structures aligned on a top thereof. Each of the semiconductor stack structures comprises a first conductive semiconductor layer, a second conductive semiconductor layer and an active region interposed between the first and second conductive semiconductor layers. A member having first lead electrodes and second lead electrodes is prepared to correspond to the plurality of semiconductor stack structures. Then, the semiconductor stack structures are bonded to the member while maintaining the semiconductor stack structures on the support substrate. After the semiconductor stack structures are bonded to the member, the member is divided.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: June 9, 2015
    Inventors: Chung Hoon Lee, Dae Sung Kal, Ki Bum Nam
  • Publication number: 20150124479
    Abstract: A light source including a circuit board, at least one light emitting device mounted on the circuit board by flip-chip bonding or surface mount technology (SMT), and a reflective portion formed on the circuit board and enclosing the light emitting device. The reflective portion formed on the circuit board reflects light emitted from the light emitting device in one direction, to reduce light loss while focusing light in a desired direction.
    Type: Application
    Filed: June 27, 2014
    Publication date: May 7, 2015
    Inventors: Seoung Ho JUNG, Jung Hwa JUNG, Ki Bum NAM
  • Publication number: 20150085527
    Abstract: A light source module, a fabrication method therefore, and a slim backlight unit including the same. The light source module includes a light emitting diode (LED) chip electrically connected to a substrate through a lower surface thereof, a wavelength conversion layer formed on the LED chip and enclosing at least the light exit face of the LED chip, and a reflector formed on a region of the LED chip excluding the light exit face.
    Type: Application
    Filed: September 26, 2014
    Publication date: March 26, 2015
    Inventors: Ki Bum Nam, Seoung Ho Jung, Yu Dae Han, Chung Hoon Lee, Hyuck Jung Choi
  • Publication number: 20150069418
    Abstract: The present invention relates to a method for separating epitaxial layers and growth substrates, and to a semiconductor device using same. According to the present invention, a semiconductor device is provided which comprises a supporting substrate and a plurality of semiconductor layers provided on the supporting substrate, wherein the uppermost layer of the semiconductor layers has a surface of non-uniform roughness.
    Type: Application
    Filed: March 19, 2013
    Publication date: March 12, 2015
    Inventors: Jeong Hun Heo, Joo Won Choi, Choong Min Lee, Su Jin Shin, Ki Bum Nam, Yu Dae Han, A Ram Cha Lee
  • Publication number: 20150062966
    Abstract: A light source module includes a circuit board, board pads disposed on the circuit board, and a light emitting diode chip disposed on the board pads. The light emitting diode chip includes a substrate and a semiconductor stacking part disposed between the substrate and the circuit board, and the substrate includes an inclined part disposed at an upper portion thereof and a discharging part disposed at one side surface thereof.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Inventors: Ki Bum Nam, Yu Dae HAN, Chung Hoon LEE
  • Publication number: 20150060905
    Abstract: A light source module includes a circuit board, light emitting diode chips mounted on the circuit board by flip-chip bonding or a surface mounting technology (SMT), and a diffusor covering the circuit board and the light emitting diode chips.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 5, 2015
    Inventors: Ki Bum NAM, Yu Dae HAN
  • Publication number: 20150055347
    Abstract: A light emitting module includes a circuit board, light emitting elements disposed on the circuit board, each light emitting element including light emitting diode chips and a wavelength conversion layer coated on the light emitting diode chips, and a lens disposed on the light emitting elements and configured to diffuse light emitted from the light emitting elements. The lens includes a concave part having a light incident surface and an upper surface through which the light incident on the lens is emitted, and at least one of the light incident surface and the upper surface includes sections disposed at least 15° from a central axis and sequentially connected in a first direction.
    Type: Application
    Filed: August 26, 2014
    Publication date: February 26, 2015
    Inventors: Eun Ju KIM, Ki Bum Nam
  • Publication number: 20140367722
    Abstract: Disclosed are a light-emitting diode and a method for manufacturing the same. A light-emitting diode according to one aspect of the present invention includes: a first conductive clad layer; a light-scattering pattern configured, in the first conductive clad layer, having a refractive index different from that of the first conductive clad layer; an active layer located under the first conductive clad layer; a second conductive clad layer located under the active layer; a first electrode configured to be electrically connected to the first conductive clad layer; and a second electrode configured to be electrically connected to the second conductive clad layer. The light-scattering pattern can improve light extraction efficiency.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 18, 2014
    Inventors: Tae Hyuk Im, Chang Yeon Kim, Yeo Jin Yoon, Joon Hee Lee, Ki Bum Nam, Da Hye Kim, Chang Ik Im, Young Wug Kim
  • Publication number: 20140361247
    Abstract: Disclosed herein is a light emitting diode (LED) including: a gallium nitride substrate; a gallium nitride-based first contact layer disposed on the gallium nitride substrate; a gallium nitride-based second contact layer; an active layer having a multi-quantum well structure and disposed between the first and second contact layers; and a super-lattice layer having a multilayer structure and disposed between the first contact layer and the active layer. By employing the gallium nitride substrate, the crystallinity of the semiconductor layers can be improved, and in addition, by disposing the super-lattice layer between the first contact layer and the active layer, a crystal defect that may be generated in the active layer can be prevented.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Applicants: SEOUL VIOSYS CO., LTD., MITSUBISHI CHEMICAL CORPORATION
    Inventors: Seung Kyu CHOI, Chae Hon Kim, Jung Whan Jung, Ki Bum Nam, Kenji Shimoyama, Kaori Kurihara
  • Publication number: 20140362603
    Abstract: Disclosed is a light source module capable of realizing a slim structure and providing excellent luminous efficiency. The light source module includes a circuit board, a light emitting diode chip mounted on the circuit board by flip-chip bonding or surface mount technology (SMT), a wavelength conversion layer disposed on the light emitting diode chip, and a reflector covering an upper surface and at least one of side surfaces of the light emitting diode chip.
    Type: Application
    Filed: May 9, 2014
    Publication date: December 11, 2014
    Applicant: Seoul Semiconductor Co., Ltd.
    Inventors: Young Jun SONG, Seoung Ho Jung, Da Hye Kim, Ki Bum Nam, Yu Dae Han, Chung Hoon Lee
  • Publication number: 20140353582
    Abstract: Disclosed herein are a high efficiency light emitting diode and a method of fabricating the same. The light emitting diode includes a semiconductor stacked structure disposed on the support substrate and including a gallium nitride-based p-type semiconductor layer, a gallium nitride-based active layer, and a gallium nitride-based n-type semiconductor layer; and a reflecting layer disposed between the support substrate and the semiconductor stacked structure, wherein the semiconductor stacked structure includes a plurality of protrusions having a truncated cone shape and fine cones formed on top surfaces of the protrusions. By this configuration, light extraction efficiency of the semiconductor stacked structure having low dislocation density can be improved.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Applicants: SEOUL VIOSYS CO., LTD., MITSUBISHI CHEMICAL CORPORATION
    Inventors: Chang Yeon KIM, Dae Sung CHO, Ki Bum NAM, Young Wug KIM, Jong Kyun YOU, Kenji SHIMOYAMA, Takahide JOICHI, Kaori KURIHARA
  • Publication number: 20140353679
    Abstract: Disclosed are a semiconductor device and a method of fabricating the same. A light emitting diode (LED) includes a conductive substrate, and a gallium nitride (GaN)-based semiconductor stack positioned on the conductive substrate. The semiconductor stack includes an active layer that is a semi-polar semiconductor layer. Accordingly, it is possible to provide an LED having improved light emitting efficiency.
    Type: Application
    Filed: December 12, 2012
    Publication date: December 4, 2014
    Inventors: Won Cheol Seo, Dae Sung Cho, Chung Hoon Lee, Ki Bum Nam
  • Publication number: 20140339566
    Abstract: Disclosed are a semiconductor device and a method of fabricating the same. The method includes forming a first GaN layer, a sacrificial layer and a second GaN layer on a GaN substrate, wherein the sacrificial layer has a bandgap narrower than those of the GaN layers; forming a groove penetrating the second GaN layer and the sacrificial layer; growing GaN-based semiconductor layers on the second GaN layer to form a semiconductor stack; forming a support substrate on the semiconductor stack; and removing the GaN substrate from the semiconductor stack by etching the sacrificial layer. Accordingly, since the sacrificial layer is etched using the groove, the support substrate can be separated from the semiconductor stack without damaging the support substrate.
    Type: Application
    Filed: December 13, 2012
    Publication date: November 20, 2014
    Inventors: Won Cheol Seo, Dae Sung Cho, Chung Hoon Lee, Ki Bum Nam
  • Publication number: 20140319553
    Abstract: Disclosed is a light-emitting element for high-current drive. The light-emitting element comprises: a light-emitting diode chip which emits ultraviolet light; and a wavelength conversion layer which converts the wavelength of the ultraviolet light emitted from the light-emitting diode chip into visible light. The light-emitting diode chip is driven at a current density of at least 150 A/cm2.
    Type: Application
    Filed: August 22, 2012
    Publication date: October 30, 2014
    Applicant: Seoul Viosys Co., Ltd.
    Inventors: Kyung Hee Ye, Dae Sung Cho, Ki Bum Nam
  • Patent number: 8664693
    Abstract: The present invention relates to a light emitting diode having an AlxGa1-xN buffer layer and a method of fabricating the same, and more particularly, to a light emitting diode having an AlxGa1-xN buffer layer, wherein between a substrate and a GaN-based semiconductor layer, the Al x Ga 1-x N (O?x?1) buffer layer having the composition ratio x of Al decreasing from the substrate to the GaN-based semiconductor layer is interposed to reduce lattice mismatch between the substrate and the GaN-based semiconductor layer, and a method of fabricating the same. To this end, the present invention provides a light emitting diode comprising a substrate; a first conductive semiconductor layer positioned on the substrate; and an AlxGa1-xN (O?x?1) buffer layer interposed between the substrate and the first conductive semiconductor layer and having a composition ratio x of Al decreasing from the substrate to the first conductive semiconductor layer.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: March 4, 2014
    Assignee: Seoul Opto Device Co., Ltd.
    Inventor: Ki Bum Nam
  • Publication number: 20130292645
    Abstract: Disclosed herein is a high efficiency light emitting diode. The light emitting diode includes: a semiconductor stack positioned over a support substrate; a reflective metal layer positioned between the support substrate and the semiconductor stack to ohmic-contact a p-type compound semiconductor layer of the semiconductor stack and having a groove exposing the semiconductor stack; a first electrode pad positioned on an n-type compound semiconductor layer of the semiconductor stack; an electrode extension extending from the first electrode pad and positioned over the groove region; and an upper insulating layer interposed between the first electrode pad and the semiconductor stack. In addition, the n-type compound semiconductor layer includes an n-type contact layer, and the n-type contact layer has a Si doping concentration of 5 to 7×1018/cm3 and a thickness in the range of 5 to 10 um.
    Type: Application
    Filed: December 6, 2011
    Publication date: November 7, 2013
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Jun Ho Yun, Ki Bum Nam, Joon Hee Lee, Chang Youn Kim, Hong Jae Yoo, Sung Hoon Hong
  • Patent number: 8575594
    Abstract: A light emitting diode (LED) for minimizing crystal defects in an active region and enhancing recombination efficiency of electrons and holes in the active region includes non-polar GaN-based semiconductor layers grown on a non-polar substrate. The semiconductor layers include a non-polar N-type semiconductor layer, a non-polar P-type semiconductor layer, and non-polar active region layers positioned between the N-type semiconductor layer and the P-type semiconductor layer. The non-polar active region layers include a well layer and a barrier layer with a superlattice structure.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: November 5, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Chung Hoon Lee, Ki Bum Nam, Dae Sung Kal
  • Patent number: 8559230
    Abstract: A non-volatile memory device and a row decoder, the non-volatile memory device including: a memory cell array comprising a plurality of memory cells and each memory cell includes a first cell transistor and a second cell transistor; and a row decoder comprising a first driver and a second driver for generating first and second control signals. The first cell transistor is connected to the row decoder to receive the first control signal and the second cell transistor is connected to the row decoder to receive the second control signal. The first driver includes a first NMOS transistor and a first PMOS transistor formed adjacent to the first NMOS transistor. The second driver includes a second NMOS transistor and a second PMOS transistor formed adjacent to the second NMOS transistor. The first and second NMOS transistors are disposed between the first PMOS transistor and the second PMOS transistor.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ki-bum Nam
  • Publication number: 20130264600
    Abstract: A method of fabricating a semiconductor device using gang bonding and a semiconductor device fabricated by the same, the method comprising preparing a support substrate having a plurality of semiconductor stack structures aligned on a top thereof. Each of the semiconductor stack structures comprises a first conductive semiconductor layer, a second conductive semiconductor layer and an active region interposed between the first and second conductive semiconductor layers. A member having first lead electrodes and second lead electrodes is prepared to correspond to the plurality of semiconductor stack structures. Then, the semiconductor stack structures are bonded to the member while maintaining the semiconductor stack structures on the support substrate. After the semiconductor stack structures are bonded to the member, the member is divided.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 10, 2013
    Inventors: Chung Hoon Lee, Dae Sung Kal, Ki Bum Nam