Patents by Inventor Kiichi Meguro

Kiichi Meguro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7771693
    Abstract: A diamond single crystal substrate manufacturing method for growing by vapor-phase synthesis a single crystal from a diamond single crystal seed substrate, comprising etching away by reactive ion etching, prior to single crystal growth, at least 0.5 ?m and less than 400 ?m, in etching thickness off the surface of the seed substrate which has been mechanically polished, thereby removing from the surface of the seed substrate the work-affected layers caused by mechanical polishing; and growing then a single crystal thereon. The manufacturing method provides a diamond single crystal substrate having a high quality, large size, and no unintentional impurity inclusions, and suitable for use as semiconductor materials, electronic components, optical components or the like.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: August 10, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto, Takahiro Imai
  • Publication number: 20100111812
    Abstract: The object of the present invention is to obtain a high quality single crystalline diamond that has less distortion and large area suitable for semiconductor device substrates or an optical component material. The present invention is a single crystalline diamond produced by chemical vapor deposition, wherein, when a linear polarized light which is composed of two linear polarized lights perpendicular to each other is introduced into one main face of the single crystalline diamond, a maximum value of a retardation between the two linear polarized lights perpendicular to each other which come out from an opposite main face is not more than 50 ?m at maximum per a thickness of 100 ?m across an entire of the single crystalline diamond, and also a method for producing the diamond.
    Type: Application
    Filed: January 8, 2010
    Publication date: May 6, 2010
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Kiichi MEGURO, Yoshiyuki Yamamoto, Takahiro Imai
  • Patent number: 7655208
    Abstract: The object of the present invention is to obtain a high quality single crystalline diamond that has less distortion and large area suitable for semiconductor device substrates or an optical component material. The present invention is a single crystalline diamond produced by chemical vapor deposition, wherein, when a linear polarized light which is composed of two linear polarized lights perpendicular to each other is introduced into one main face of the single crystalline diamond, a maximum value of a retardation between the two linear polarized lights perpendicular to each other which come out from an opposite main face is not more than 50 ?m at maximum per a thickness of 100 ?m across an entire of the single crystalline diamond, and also a method for producing the diamond.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: February 2, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto, Takahiro Imai
  • Patent number: 7615203
    Abstract: A single crystal diamond grown by vapor phase synthesis, wherein when one main surface is irradiated with a linearly polarized light considered to be the synthesis of two mutually perpendicular linearly polarized light beams, the phase difference between the two mutually perpendicular linearly polarized light beams exiting another main surface on the opposite side is, at a maximum, not more than 50 nm per 100 ?m of crystal thickness over the entire crystal. This single crystal diamond is of a large size and high quality unattainable up to now, and has characteristics that are extremely desirable in semiconductor device substrates and are applied to optical components of which low strain is required.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: November 10, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshiyuki Yamamoto, Kiichi Meguro, Takahiro Imai
  • Publication number: 20090169814
    Abstract: A method for growing a low-resistance phosphorus-doped epitaxial thin film having a specific resistance of 300 ?cm or less at 300 K on a principal surface of a {111} monocrystal substrate under conditions in which the phosphorus atom/carbon atom ratio is 3% or higher, includes the principal surface having an off-angle of 0.50° or greater. The diamond monocrystal having a low-resistance phosphorus-doped diamond epitaxial thin film is such that the thin-film surface has an off-angle of 0.50° or greater with respect to the {111} plane, and the specific resistance of the low-resistance phosphorus-doped diamond epitaxial thin film is 300 ?cm or less at 300 K.
    Type: Application
    Filed: December 26, 2007
    Publication date: July 2, 2009
    Inventors: Akihiko Ueda, Kiichi Meguro, Yoshiyuki Yamamoto, Yoshiki Nishibayashi, Takahiro Imai
  • Publication number: 20090142249
    Abstract: A method for manufacturing a diamond single crystal substrate, in which a single crystal is grown from a diamond single crystal serving as a seed substrate by vapor phase synthesis, said method comprising: preparing a diamond single crystal seed substrate which has a main surface whose planar orientation falls within an inclination range of not more than 8 degrees relative to a {100} plane or a {111} plane, as a seed substrate; forming a plurality of planes of different orientation which are inclined in the outer peripheral direction of the main surface relative to the main surface on one side of this seed substrate, by machining; and then growing a diamond single crystal by vapor phase synthesis.
    Type: Application
    Filed: February 3, 2009
    Publication date: June 4, 2009
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kiichi MEGURO, Yoshiyuki YAMAMOTO, Takahiro IMAI
  • Patent number: 7534360
    Abstract: The method of making a diamond product in accordance with the present invention comprises the steps of forming a diamond substrate (50) with a mask layer (52), and etching the diamond substrate (50) formed with the mask layer (52) with a plasma of a mixed gas composed of a gas containing an oxygen atom and a gas containing a fluorine atom, whereas the fluorine atom concentration is within the range of 0.04% to 6% with respect to the total number of atoms in the mixed gas.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: May 19, 2009
    Assignees: Sumitomo Electric Industries, Ltd., Japan Fine Ceramics Center
    Inventors: Yoshiki Nishibayashi, Kiichi Meguro, Takahiro Imai, Yutaka Ando
  • Publication number: 20090120366
    Abstract: The present invention provides a microwave plasma CVD device that can satisfactorily perform plasma position control under a condition capable of fabricating a large-area high-quality diamond thin film or the like.
    Type: Application
    Filed: January 29, 2007
    Publication date: May 14, 2009
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Akihiko Ueda, Kiichi Meguro, Yoshiyuki Yamamoto, Yoshiki Nishibayashi, Takahiro Imai
  • Patent number: 7524372
    Abstract: A method for manufacturing a diamond single crystal substrate, in which a single crystal is grown from a diamond single crystal serving as a seed substrate by vapor phase synthesis, said method comprising: preparing a diamond single crystal seed substrate which has a main surface whose planar orientation falls within an inclination range of not more than 8 degrees relative to a {100} plane or a {111} plane, as a seed substrate; forming a plurality of planes of different orientation which are inclined in the outer peripheral direction of the main surface relative to the main surface on one side of this seed substrate, by machining; and then growing a diamond single crystal by vapor phase synthesis.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: April 28, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto, Takahiro Imai
  • Patent number: 7481879
    Abstract: A diamond single crystal substrate manufacturing method for growing by vapor-phase synthesis a single crystal from a diamond single crystal seed substrate, comprising etching away by reactive ion etching, prior to single crystal growth, at least 0.5 ?m and less than 400 ?m, in etching thickness off the surface of the seed substrate which has been mechanically polished, thereby removing from the surface of the seed substrate the work-affected layers caused by mechanical polishing; and growing then a single crystal thereon. The manufacturing method provides a diamond single crystal substrate having a high quality, large size, and no unintentional impurity inclusions, and suitable for use as semiconductor materials, electronic components, optical components or the like.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: January 27, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto, Takahiro Imai
  • Publication number: 20080311024
    Abstract: A diamond single crystal substrate manufacturing method for growing by vapor-phase synthesis a single crystal from a diamond single crystal seed substrate, comprising etching away by reactive ion etching, prior to single crystal growth, at least 0.5 ?m and less than 400 ?m, in etching thickness off the surface of the seed substrate which has been mechanically polished, thereby removing from the surface of the seed substrate the work-affected layers caused by mechanical polishing; and growing then a single crystal thereon. The manufacturing method provides a diamond single crystal substrate having a high quality, large size, and no unintentional impurity inclusions, and suitable for use as semiconductor materials, electronic components, optical components or the like.
    Type: Application
    Filed: August 15, 2008
    Publication date: December 18, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kiichi MEGURO, Yoshiyuki YAMAMOTO, Takahiro IMAI
  • Publication number: 20080311023
    Abstract: A single crystal diamond grown by vapor phase synthesis, wherein when one main surface is irradiated with a linearly polarized light considered to be the synthesis of two mutually perpendicular linearly polarized light beams, the phase difference between the two mutually perpendicular linearly polarized light beams exiting another main surface on the opposite side is, at a maximum, not more than 50 nm per 100 ?m of crystal thickness over the entire crystal. This single crystal diamond is of a large size and high quality unattainable up to now, and has characteristics that are extremely desirable in semiconductor device substrates and are applied to optical components of which low strain is required.
    Type: Application
    Filed: May 26, 2005
    Publication date: December 18, 2008
    Inventors: Yoshiyuki Yamamoto, Kiichi Meguro, Takahiro Imai
  • Patent number: 7407549
    Abstract: A diamond single crystal composite substrate which are constructed from a plurality of diamond single crystal substrates with uniform plane orientations disposed side by side and integrated overall by growing diamond single crystals thereon by vapor phase synthesis, in which the deviation of the plane orientation of the main plane of each of said plurality of diamond single crystal substrates, excluding one diamond single crystal substrate, from the {100} plane is less than 1 degree, the deviation of the plane orientation of the main plane of the excluded one substrate from the {100} plane is 1 to 8 degrees, said one diamond single crystal substrate is disposed in the outermost circumferential part when the diamond single crystal substrates are disposed side by side, and is disposed so that the <100> direction in the main plane of said one substrate faces in the outer circumferential direction of the disposed substrates, and diamond single crystals are then grown by vapor phase synthesis so that the dia
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: August 5, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto, Takahiro Imai
  • Patent number: 7390695
    Abstract: A manufacturing method for a large-scale diamond substrate and the produced substrate that is suitable for semiconductor lithography processing and large-scale optical parts, semiconductor materials, thermal-release substrate, semiconductor wafer processing, back-feed devices, and others. The manufacturing method of the present invention includes: preparing a substrate having a main face including a first region which is a concave and a second region which surrounds the first region, and mounting, on the first region, a single crystalline diamond seed substrate having a plate thickness thicker than the concave depth of the first region; forming a CVD diamond layer from the single crystalline diamond seed substrate using a chemical vapor deposition, and mutually connecting by forming a CVD diamond layer on the second region at the same time; and polishing to substantially flatten both the CVD diamond layers and on the second region by mechanically polishing.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: June 24, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kiichi Meguro, Keisuke Tanizaki, Akihiko Namba, Yoshiyuki Yamamoto, Takahiro Imai
  • Publication number: 20060231015
    Abstract: The object of the present invention is to obtain a high quality single crystalline diamond that has less distortion and large area suitable for semiconductor device substrates or an optical component material. The present invention is a single crystalline diamond produced by chemical vapor deposition, wherein, when a linear polarized light which is composed of two linear polarized lights perpendicular to each other is introduced into one main face of the single crystalline diamond, a maximum value of a retardation between the two linear polarized lights perpendicular to each other which come out from an opposite main face is not more than 50 ?m at maximum per a thickness of 100 ?m across an entire of the single crystalline diamond, and also a method for producing the diamond.
    Type: Application
    Filed: April 12, 2006
    Publication date: October 19, 2006
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto, Takahiro Imai
  • Publication number: 20060213428
    Abstract: The present invention provides a manufacturing method for a large-scale diamond substrate and a substrate produced by the method suitable for semiconductor lithography processing and large-scale optical parts, semiconductor materials, thermal-release substrate, semiconductor wafer processing, and back-feed devices, and others.
    Type: Application
    Filed: March 28, 2006
    Publication date: September 28, 2006
    Inventors: Kiichi Meguro, Keisuke Tanizaki, Akihiko Namba, Yoshiyuki Yamamoto, Takahiro Imai
  • Publication number: 20060216220
    Abstract: A method for manufacturing a diamond single crystal substrate, in which a single crystal is grown from a diamond single crystal serving as a seed substrate by vapor phase synthesis, said method comprising: preparing a diamond single crystal seed substrate which has a main surface whose planar orientation falls within an inclination range of not more than 8 degrees relative to a {100} plane or a {111} plane, as a seed substrate; forming a plurality of planes of different orientation which are inclined in the outer peripheral direction of the main surface relative to the main surface on one side of this seed substrate, by machining; and then growing a diamond single crystal by vapor phase synthesis.
    Type: Application
    Filed: March 27, 2006
    Publication date: September 28, 2006
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto, Takahiro Imai
  • Patent number: 6958571
    Abstract: A method of manufacturing an electron-emitting element (20) for emitting electrons from diamond includes the first step of forming a diamond columnar member (25) on a diamond substrate (21), and the second step of forming an electron-emitting portion (30) having a base portion (36) and a sharp-pointed portion (32) which is located closer to a distal end side than the base portion (36) and emits the electrons by performing etching processing with respect to the columnar member (25).
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: October 25, 2005
    Assignees: Sumitomo Electric Industries, Ltd., Japan Fine Ceramics Center
    Inventors: Yoshiki Nishibayashi, Yutaka Ando, Kiichi Meguro, Takahiro Imai
  • Publication number: 20050211159
    Abstract: A diamond single crystal substrate obtained by a vapor-phase growth method, wherein the diamond intrinsic Raman shift of the diamond single crystal substrate surface measured by microscopic Raman spectroscopy with a focused beam spot diameter of excitation light of 2 ?m is deviated by +0.5 cm?1 or more to +3.0 cm?1 or less from the standard Raman shift quantity of strain-free diamond, in a region (region A) which is more than 0% to not more than 25% of the surface, and is deviated by ?1.0 cm?1 or more to less than +0.5 cm?1 from the standard Raman shift quantity of strain-free diamond, in a region (region B) of the surface other than the region A. The diamond single crystal substrate can be obtained with a large size and high-quality without cracking and is suitable for semiconductor materials, electronic components, and optical components or the like.
    Type: Application
    Filed: February 14, 2005
    Publication date: September 29, 2005
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto, Takahiro Imai
  • Publication number: 20050160968
    Abstract: It is an object of the present invention to provide a diamond substrate with high toughness, a large surface area, and high quality, for use in semiconductor materials, electronic components, optical components, and so forth, and a method for manufacturing this substrate. A diamond polycrystalline film is laminated on the surface of a diamond monocrystalline substrate to create a diamond composite substrate. In said diamond composite substrate, it is preferable that the main face, which has the largest surface area of the diamond monocrystalline substrate, be the {100} plane, and the diamond polycrystalline film be laminated on the opposite face parallel to this face. The diamond monocrystalline substrate 3 may be made up of a plurality of diamond monocrystals having the same orientation of the main face, and these plurality of diamond monocrystals may be joined by a diamond crystal layer 4 to create a diamond composite substrate 2.
    Type: Application
    Filed: January 22, 2004
    Publication date: July 28, 2005
    Inventors: Kiichi Meguro, Yoshiyuki Yamamoto