Patents by Inventor Kimihiro Satoh

Kimihiro Satoh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130337582
    Abstract: Various embodiments of the invention relate to etching processes used in fabrication of MTJ cells in an MRAM device. The various embodiments can be used in combination with each other. The first embodiment adds a hard mask buffer layer between a hard mask and a top electrode. The second embodiment uses a multilayered etching hard mask. The third embodiment uses a multilayered top electrode structure including a first Cu layer under a second layer such as Ta. The fourth embodiment is a two-phase etching process used for the bottom electrode to remove re-deposited material while maintaining a more vertical sidewall etching profile. In the first phase the bottom electrode layer is removed using carbonaceous reactive ion etching until the endpoint. In the second phase an inert gas and/or oxygen plasma is used to remove the polymer that was deposited during the previous etching processes.
    Type: Application
    Filed: July 30, 2013
    Publication date: December 19, 2013
    Applicant: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang, Yadav Ranjan, Parviz Keshtbod, Roger K. Malmhall
  • Patent number: 8575584
    Abstract: The present invention relates to resistive memory devices incorporating therein vertical selection transistors and methods for making the same.
    Type: Grant
    Filed: September 3, 2011
    Date of Patent: November 5, 2013
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang
  • Patent number: 8574928
    Abstract: Fabrication methods for MRAM are described wherein any re-deposited metal on the sidewalls of the memory element pillars is cleaned before the interconnection process is begun. In embodiments the pillars are first fabricated, then a dielectric material is deposited on the pillars over the re-deposited metal on the sidewalls. The dielectric material substantially covers any exposed metal and therefore reduces sources of re-deposition during subsequent etching. Etching is then performed to remove the dielectric material from the top electrode and the sidewalls of the pillars down to at least the bottom edge of the barrier. The result is that the previously re-deposited metal that could result in an electrical short on the sidewalls of the barrier is removed. Various embodiments of the invention include ways of enhancing or optimizing the process. The bitline interconnection process proceeds after the sidewalls have been etched clean as described.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: November 5, 2013
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Yuchen Zhou, Jing Zhang, Dong Ha Jung, Ebrahim Abedifard, Rajiv Yadav Ranjan, Parviz Keshtbod
  • Publication number: 20130267042
    Abstract: Fabrication methods for MRAM are described wherein any re-deposited metal on the sidewalls of the memory element pillars is cleaned before the interconnection process is begun. In embodiments the pillars are first fabricated, then a dielectric material is deposited on the pillars over the re-deposited metal on the sidewalls. The dielectric material substantially covers any exposed metal and therefore reduces sources of re-deposition during subsequent etching. Etching is then performed to remove the dielectric material from the top electrode and the sidewalls of the pillars down to at least the bottom edge of the barrier. The result is that the previously re-deposited metal that could result in an electrical short on the sidewalls of the barrier is removed. Various embodiments of the invention include ways of enhancing or optimizing the process. The bitline interconnection process proceeds after the sidewalls have been etched clean as described.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 10, 2013
    Inventors: Kimihiro Satoh, Yiming Huai, Yuchen Zhou, Jing Zhang, Dong Ha Jung, Ebrahim Abedifard, Rajiv Yadav Ranjan, Parviz Keshtbod
  • Publication number: 20130244344
    Abstract: Methods of fabricating MTJ arrays using two orthogonal line patterning steps are described. Embodiments are described that use a self-aligned double patterning method for one or both orthogonal line patterning steps to achieve dense arrays of MTJs with feature dimensions one half of the minimum photo lithography feature size (F). In one set of embodiments, the materials and thicknesses of the stack of layers that provide the masking function are selected so that after the initial set of mask pads have been patterned, a sequence of etching steps progressively transfers the mask pad shape through the multiple mask layer and down through all of the MTJ cell layers to the form the complete MTJ pillars. In another set of embodiments, the MTJ/BE stack is patterned into parallel lines before the top electrode layer is deposited.
    Type: Application
    Filed: September 11, 2012
    Publication date: September 19, 2013
    Inventors: Roger Klas Malmhall, Kimihiro Satoh, Jing Zhang, Parviz Keshtbod, Rajiv Yadav Ranjan
  • Patent number: 8536063
    Abstract: Various embodiments of the invention relate to etching processes used in fabrication of MTJ cells in an MRAM device. The various embodiments can be used in combination with each other. The first embodiment adds a hard mask buffer layer between a hard mask and a top electrode. The second embodiment uses a multilayered etching hard mask. The third embodiment uses a multilayered top electrode structure including a first Cu layer under a second layer such as Ta. The fourth embodiment is a two-phase etching process used for the bottom electrode to remove re-deposited material while maintaining a more vertical sidewall etching profile. In the first phase the bottom electrode layer is removed using carbonaceous reactive ion etching until the endpoint. In the second phase an inert gas and/or oxygen plasma is used to remove the polymer that was deposited during the previous etching processes.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: September 17, 2013
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang, Rajiv Yadav Ranjan, Parviz Keshtbod, Roger K. Malmhall
  • Publication number: 20130126819
    Abstract: The present invention relates to resistive memory devices incorporating therein vertical selection transistors and methods for making the same. A memory device comprises a semiconductor substrate having a first type conductivity and a plurality of parallel trenches therein; a plurality of parallel common source lines having a second type conductivity opposite to the first type conductivity formed in the trench bottoms; a plurality of parallel gate electrodes formed on the trench sidewalls with a gate dielectric layer interposed therebetween, the gate electrodes being lower in height than the trench sidewalls; and a plurality of drain regions having the second type conductivity formed in top regions of the trench sidewalls, at least two of the drain regions being formed in each of the trench sidewalls and sharing a respective common channel formed in the each of the trench sidewalls and a respective one of the source lines.
    Type: Application
    Filed: April 4, 2012
    Publication date: May 23, 2013
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang
  • Publication number: 20130126823
    Abstract: The present invention relates to memory devices incorporating therein a novel memory cell architecture which includes an array of selection transistors sharing a common channel and method for making the same. A memory device comprises a semiconductor substrate having a first type conductivity, a plurality of drain regions and a common source region separated by a common plate channel in the substrate, and a selection gate disposed on top of the plate channel with a gate dielectric layer interposed therebetween. The plurality of drain regions and the common source region have a second type conductivity opposite to the first type provided in the substrate.
    Type: Application
    Filed: January 23, 2012
    Publication date: May 23, 2013
    Inventors: Kimihiro SATOH, Yiming Huai, Jing Zhang
  • Publication number: 20130075840
    Abstract: A self-aligned via of a MRAM cell that connects a memory element including a top electrode, a memory element stack having a plurality of layers, and a bottom electrode to a bit line running over array of the memory elements. The self-aligned via also serves as a hard mask for memory element etching. The hard mask material has high selectivity in the etching ambient to maintain enough remaining thickness. It is also selectively removed during dual damascene process to form a self-aligned via hole. In one embodiment, Aluminum oxide or Magnesium oxide is adapted as the hard mask.
    Type: Application
    Filed: February 9, 2012
    Publication date: March 28, 2013
    Applicant: AVALANCHE TECHNOLOGY, INC.
    Inventors: Kimihiro Satoh, Jing Zhang, Yiming Huai
  • Publication number: 20130056698
    Abstract: The present invention relates to resistive memory devices incorporating therein vertical selection transistors and methods for making the same.
    Type: Application
    Filed: September 3, 2011
    Publication date: March 7, 2013
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang
  • Publication number: 20130052752
    Abstract: Various embodiments of the invention relate to etching processes used in fabrication of MTJ cells in an MRAM device. The various embodiments can be used in combination with each other. The first embodiment adds a hard mask buffer layer between a hard mask and a top electrode. The second embodiment uses a multilayered etching hard mask. The third embodiment uses a multilayered top electrode structure including a first Cu layer under a second layer such as Ta. The fourth embodiment is a two-phase etching process used for the bottom electrode to remove re-deposited material while maintaining a more vertical sidewall etching profile. In the first phase the bottom electrode layer is removed using carbonaceous reactive ion etching until the endpoint. In the second phase an inert gas and/or oxygen plasma is used to remove the polymer that was deposited during the previous etching processes.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang, Rajiv Yadav Ranjan, Parviz Keshtbod, Roger K. Malmhall
  • Patent number: 8379453
    Abstract: The MONOS vertical memory cell of the present invention allow miniaturization of the memory cell area. The two embodiments of split gate and single gate provide for efficient program and erase modes as well as preventing read disturb in the read mode.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: February 19, 2013
    Assignee: TROM
    Inventor: Kimihiro Satoh
  • Publication number: 20130032775
    Abstract: BEOL memory cells are described that include one or more sidewall protection layers on the memory device (including, for example, an MTJ element) deposited prior to interconnect via etching to prevent the formation of electrical shorts between layers. One embodiment uses a single layer sidewall protection sleeve that is deposited after the memory device has been patterned. The layer material is vertically etched down to expose the upper surface of the top electrode while leaving a residual layer of protective material surrounding the rest of the memory device. The material for the protection layer is selected to resist the etchant used to remove the first dielectric material from the via in the subsequent interconnect process. A second embodiment uses dual-layer sidewall protection in which the first layer covers the memory element is preferably an oxygen-free dielectric and the second layer protects the first layer during via etching.
    Type: Application
    Filed: October 20, 2011
    Publication date: February 7, 2013
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang, Ebrahim Abedifard
  • Publication number: 20130032907
    Abstract: BEOL memory cells are described that include one or more sidewall protection layers on the memory device (including, for example, an MTJ element) deposited prior to interconnect via etching to prevent the formation of electrical shorts between layers. One embodiment uses a single layer sidewall protection sleeve that is deposited after the memory device has been patterned. The layer material is vertically etched down to expose the upper surface of the top electrode while leaving a residual layer of protective material surrounding the rest of the memory device. The material for the protection layer is selected to resist the etchant used to remove the first dielectric material from the via in the subsequent interconnect process. A second embodiment uses dual-layer sidewall protection in which the first layer covers the memory element is preferably an oxygen-free dielectric and the second layer protects the first layer during via etching.
    Type: Application
    Filed: August 1, 2011
    Publication date: February 7, 2013
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang, Ebrahim Abedifard
  • Publication number: 20120306005
    Abstract: The present invention relates to transistor devices having a trough channel structure through which electrical current flows and methods for making the same. A transistor device having a semiconductor trough structure comprises a semiconductor substrate of a first conductivity type having a top surface; a semiconductor trough protruded from the top surface of the substrate along a first direction and having two top surfaces, two outer lateral surfaces, and an inner surface; a layer of isolation insulator disposed on the substrate and abutting the outer lateral surfaces of the semiconductor trough; a gate dielectric layer lining the inner surface and the top surfaces of the semiconductor trough; and a gate electrode disposed on top of the isolation insulator and extending over and filling the semiconductor trough with the gate dielectric layer interposed therebetween. The gate electrode extends along a second direction not parallel to the first direction provided in the semiconductor trough.
    Type: Application
    Filed: July 21, 2011
    Publication date: December 6, 2012
    Inventors: Kimihiro Satoh, Jing Zhang, Yiming Huai
  • Publication number: 20120306033
    Abstract: A method of manufacturing a magnetic memory cell, including a magnetic tunnel junction (MTJ), includes using silicon nitride layer and silicon oxide layer to form a trench for depositing copper to be employed for connecting the MTJ to other circuitry without the use of a via.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 6, 2012
    Applicant: AVALANCHE TECHNOLOGY, INC.
    Inventors: Kimihiro Satoh, Yiming Huai, Jing Zhang
  • Patent number: 8320175
    Abstract: Disclosed is a nonvolatile magnetic memory cell, comprising: a) a switchable magnetic element; b) a word line and a bit line to energize the switchable magnetic element; and c) a magnetic field boosting material positioned adjacent to at least one of the word line and the bit line to boost a magnetic field generated by current flowing therein.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: November 27, 2012
    Assignee: MagSil Corporation
    Inventors: Krishnakumar Mani, Jannier Maximo Roiz Wilson, Kimihiro Satoh
  • Publication number: 20120241826
    Abstract: A magnetic memory cell is formed including a magneto tunnel junction (MTJ) and an access transistor, which is used to access the MTJ in operation. The access transistor, which is formed on a silicon substrate, includes a gate, drain and source with the gate position substantially perpendicular to the plane of the silicon substrate thereby burying the gate and allowing more surface area on the silicon substrate for formation of additional memory cells.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Applicant: AVALANCHE TECHNOLOGY, INC.
    Inventors: Kimihiro Satoh, Ebrahim Abedifard
  • Publication number: 20120063230
    Abstract: The MONOS vertical memory cell of the present invention allow miniaturization of the memory cell area. The two embodiments of split gate and single gate provide for efficient program and erase modes as well as preventing read disturb in the read mode.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 15, 2012
    Inventor: Kimihiro Satoh
  • Patent number: 8081515
    Abstract: The MONOS vertical memory cell of the present invention allow miniaturization of the memory cell area. The two embodiments of split gate and single gate provide for efficient program and erase modes as well as preventing read disturb in the read mode.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 20, 2011
    Assignee: Trom
    Inventor: Kimihiro Satoh