Patents by Inventor Kin Chung

Kin Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170367776
    Abstract: MRI-guided robotics offers possibility for physicians to perform interventions remotely on confined anatomy. While the pathological and physiological changes could be visualized by high-contrast volumetric MRI scan during the procedure, robots promise improved navigation with added dexterity and precision. In cardiac catheterization, however, maneuvering a long catheter (1-2 meters) to the desired location and performing the therapy are still challenging. To meet this challenge, this invention presents an MRI-conditional catheter robotic system that integrates intra-op MRI, MR-based tracking units and enhanced visual guidance with catheter manipulation. This system differs fundamentally from existing master/slave catheter manipulation systems, of which the robotic manipulation is still challenging due to the very limited image guidance. This system provides a means of integrating intra-operative MR imaging and tracking to improve the performance of tele-operated robotic catheterization.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 28, 2017
    Inventors: Ka Wai KWOK, Ziyang DONG, Ziyan GUO, Kin Chung Denny FU, Kit Hang LEE, Chim Lee CHEUNG
  • Publication number: 20170317220
    Abstract: A bolometer. In one embodiment a graphene sheet is configured to absorb electromagnetic waves. The graphene sheet has two contacts connected to an amplifier, and a power detector connected to the amplifier. Electromagnetic power in the evanescent electromagnetic waves is absorbed in the graphene sheet, heating the graphene sheet. The power of Johnson noise generated at the contacts is proportional to the temperature of the graphene sheet. The Johnson noise is amplified and the power in the Johnson noise is used as a measure of the temperature of the graphene sheet, and of the amount of electromagnetic wave power absorbed by the graphene sheet.
    Type: Application
    Filed: July 18, 2017
    Publication date: November 2, 2017
    Inventor: Kin Chung Fong
  • Patent number: 9799817
    Abstract: A detector for detecting single photons of infrared radiation or longer wavelength electromagnetic radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In other embodiments a transmission line or antenna is coupled to the graphene sheet and guides longer-wavelength photons to the graphene sheet. A photon absorbed by the graphene sheet heats the graphene sheet. Part of the graphene sheet is part of the Josephson junction as the weak link, and a constant bias current is driven through the Josephson junction; an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: October 24, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9761782
    Abstract: A detector for detecting single photons of infrared radiation or longer wavelength electromagnetic radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In other embodiments a transmission line or antenna is coupled to the graphene sheet and guides longer-wavelength photons to the graphene sheet. A photon absorbed by the graphene sheet heats the graphene sheet. Part of the graphene sheet is part of the Josephson junction as the weak link, and a constant bias current is driven through the Josephson junction; an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: September 12, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9715687
    Abstract: One embodiment is a flat card that includes an electrically non-conductive substrate and a plurality of electrical conductors disposed on a surface of the non-conductive substrate. The conductors are connected together to form patterns of conductive lines connected to conductive geometric shapes located at ends of the conductive lines. A switch is positioned between two of the conductive geometric shapes and switchable between an open state and a closed state.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: July 25, 2017
    Assignee: Kazoo Technology (Hong Kong) Limited
    Inventors: Pak Tao Alan Lau, Kin Chung Kendall Lo
  • Patent number: 9666743
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In some embodiments the waveguide is omitted and infrared light propagating in free space illuminates the graphene sheet directly. A photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: May 30, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Publication number: 20170092834
    Abstract: A detector for detecting single photons of infrared radiation or longer wavelength electromagnetic radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In other embodiments a transmission line or antenna is coupled to the graphene sheet and guides longer-wavelength photons to the graphene sheet. A photon absorbed by the graphene sheet heats the graphene sheet. Part of the graphene sheet is part of the Josephson junction as the weak link, and a constant bias current is driven through the Josephson junction; an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Application
    Filed: September 28, 2016
    Publication date: March 30, 2017
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9589161
    Abstract: One embodiment is a flat card that includes an electrically non-conductive substrate and a plurality of electrical conductors disposed on a surface of the non-conductive substrate. The conductors are connected together to form patterns of conductive lines connected to conductive geometric shapes located at ends of the conductive lines. A switch is positioned between two of the conductive geometric shapes and switchable between an open state and a closed state.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: March 7, 2017
    Assignee: Kazoo Technology (Hong Kong) Limited
    Inventors: Pak Tao Alan Lau, Kin Chung Kendall Lo
  • Patent number: 9577176
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. An infrared photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: February 21, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Publication number: 20170038260
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. The graphene sheet has two contacts connected to an amplifier, a power detector, and a pulse detector. An infrared photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet, which increases the Johnson noise generated at the contacts. The Johnson noise is amplified and the absorption of a photon is detected by the power detector and pulse detector.
    Type: Application
    Filed: July 7, 2015
    Publication date: February 9, 2017
    Inventor: Kin Chung Fong
  • Patent number: 9548436
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. An infrared photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: January 17, 2017
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9542068
    Abstract: Described herein are systems and methods that employ a widgetless and buttonless multi-touch interface for constrained manipulations of 3D objects. The widget-less multi-touch user interface can map different multi-touch gestures to different 3D object manipulation tasks, allowing a user to manipulate 3D objects without operating widgets or performing mode switchings or tool selections. User interaction is greatly simplified by using single touch actions that simultaneously specify the transformation constraint, the transformation type, and the magnitude of transformation and apply the transformation to the focus object. Additionally, the axis-based constrained manipulations support active snapping and axis transfer. Active snapping allows the user to draw a free touch path connecting two 3D objects to be snapped together, avoiding tedious operations required with standard transformation manipulations.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: January 10, 2017
    Assignee: THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Chiew Lan Tai, Kin Chung Au, Hongbo Fu
  • Publication number: 20160370232
    Abstract: An infrared bolometer. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. The graphene sheet has two contacts connected to an amplifier, and a power detector connected to the amplifier. Infrared electromagnetic power in the evanescent waves is absorbed in the graphene sheet, heating the graphene sheet. The power of Johnson noise generated at the contacts is proportional to the temperature of the graphene sheet. The Johnson noise is amplified and the power in the Johnson noise is used as a measure of the temperature of the graphene sheet, and of the amount of infrared power propagating in the waveguide.
    Type: Application
    Filed: July 8, 2015
    Publication date: December 22, 2016
    Inventor: Kin Chung Fong
  • Publication number: 20160372622
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. In some embodiments the waveguide is omitted and infrared light propagating in free space illuminates the graphene sheet directly. A photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Application
    Filed: August 19, 2016
    Publication date: December 22, 2016
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Patent number: 9502630
    Abstract: A detector for detecting single photons of infrared radiation. In one embodiment a waveguide configured to transmit infrared radiation is arranged to be adjacent a graphene sheet and configured so that evanescent waves from the waveguide overlap the graphene sheet. An infrared photon absorbed by the graphene sheet from the evanescent waves heats the graphene sheet. The graphene sheet is coupled to the weak link of a Josephson junction, and a constant bias current is driven through the Josephson junction, so that an increase in the temperature of the graphene sheet results in a decrease in the critical current of the Josephson junction and a voltage pulse in the voltage across the Josephson junction. The voltage pulse is detected by the pulse detector.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: November 22, 2016
    Assignee: RAYTHEON BBN TECHNOLOGIES CORP.
    Inventors: Kin Chung Fong, Thomas A. Ohki
  • Publication number: 20160299660
    Abstract: The present invention is concerned with a cursor and a fan-shaped cursor. The cursor may not be visible by a user. When not visible by a user it is called an Implicit Fan Cursor or IFC. The IFC is a novel type of area cursor that couples the cursor's activation area with its velocity, i.e., its speed and direction of motion. The cursor allows a user to capture a target item more easily with minimal or at least lesser cursor motion. Spanning angle of the cursor's activation area grows as a function of its speed to a maximum span of <360 degrees, and the orientation of the activation area is determined by the cursor's moving direction. At a lower speed, the fan cursor behaves as and resembles a spotlight cursor, enabling the user to precisely acquire distant targets. At higher speed, it behaves as a semi-circular area cursor, allowing the user to easily approach the targets along the specified rough orientation.
    Type: Application
    Filed: December 2, 2014
    Publication date: October 13, 2016
    Inventors: Kin Chung AU, Xiaojun SU, Wing Hung Rynson LAU
  • Patent number: 9283204
    Abstract: This invention relates to extracts and refined fractions of a traditional Chinese medicinal herb, Alpinia officinarum (AO), components thereof, and the use of such compounds and compositions to treat neurodegenerative or neuropathological conditions or to inhibit aggregation of a-synuclein.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: March 15, 2016
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Nancy Yuk Yu Ip, Kenny Ka Kin Chung, Fanny Chui Fun Ip, Guangmiao Fu
  • Patent number: 9250730
    Abstract: The present invention is concerned is a target acquisition system for use in touch screen graphical user interface for selecting a desired target from a plurality of potential selectable targets, comprising means for defining a local region of interest (ROI) of predefined shape and area; means for, on contact of a finger of a user on the touch screen, allowing activation of the ROI; means for ordering the potential selectable targets within the ROI into a one-dimensional (1-D) ordered list; means for mapping movement of the finger on the touch screen; and means for selection of the desired target from the plurality of potential selectable targets. The system is configured to allow operation of the defining in step a), the activation in step b), the ordering in step c), the mapping in step d) and the selection in step e) in a single touch action.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: February 2, 2016
    Assignee: CITY UNIVERSITY OF HONG KONG
    Inventors: Kin Chung Au, Xiaojun Su, Wing Hung Rynson Lau
  • Publication number: 20150268744
    Abstract: The present invention is concerned is a target acquisition system for use in touch screen graphical user interface for selecting a desired target from a plurality of potential selectable targets, comprising means for defining a local region of interest (ROI) of predefined shape and area; means for, on contact of a finger of a user on the touch screen, allowing activation of the ROI; means for ordering the potential selectable targets within the ROI into a one-dimensional (1-D) ordered list; means for mapping movement of the finger on the touch screen; and means for selection of the desired target from the plurality of potential selectable targets. The system is configured to allow operation of the defining in step a), the activation in step b), the ordering in step c), the mapping in step d) and the selection in step e) in a single touch action.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 24, 2015
    Applicant: City University of Hong Kong
    Inventors: Kin Chung Au, Xiaojun Su, Wing Hung Rynson Lau
  • Patent number: 9104308
    Abstract: Described herein are finger registration systems and methods for use with a multi-touch device that can facilitate in place execution of commands or operations, thereby reducing focus switching and minimizing hand movement. The finger registration methods are simple and robust, using only contact points on the touch-based device, without requiring additional hardware. Direct mapping of operations to gestures involving individual fingers or combination of fingers (e.g., finger chords), provides a new and rich set of direct manipulation without focus switching for selecting commands/operations.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: August 11, 2015
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Kin-Chung Au, Chiew-Lan Tai