Patents by Inventor King Owyang

King Owyang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060108671
    Abstract: A semiconductor package includes a die that is interposed, flip-chip style, between an upper lead frame and a lower lead frame. The lower lead frame has contacts that are aligned with terminals on the bottom surface of the die. The upper lead frame contacts a terminal on the top side of the die, and the edges of the upper lead frame are bent downward around the edges of the die, giving the upper lead frame a cup shape. The edge of the upper lead frame contact another portion of the lower lead frame, so that all of the contacts of the package are coplanar and can be surface-mounted on a printed circuit board. The terminals of the die are electrically connected to the lead frames by means of solder layers. The thicknesses of the respective solder layers that connect the die to the lead frames are predetermined to optimize the performance of the package through numerous thermal cycles. This is done by fabricating the lower lead frame with a plurality of mesas and using a double solder reflow process.
    Type: Application
    Filed: November 23, 2004
    Publication date: May 25, 2006
    Inventors: Mohammed Kasem, King Owyang, Frank Kuo, Serge Jaunay, Sen Mao, Oscar Ou, Peter Wang, Chang-Sheng Chen
  • Patent number: 7033876
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the substrate. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. Therefore, in embodiments where the thermal budget of the process is limited following the implant of the drain-drift region, the PN junctions between the drain-drift region and the epitaxial layer are self-aligned with the edges of the thick bottom oxide.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: April 25, 2006
    Assignee: Siliconix Incorporated
    Inventors: Mohamed N. Darwish, King Owyang
  • Publication number: 20050236665
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the substrate. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. Therefore, in embodiments where the thermal budget of the process is limited following the implant of the drain-drift region, the PN junctions between the drain-drift region and the epitaxial layer are self-aligned with the edges of the thick bottom oxide.
    Type: Application
    Filed: June 22, 2005
    Publication date: October 27, 2005
    Inventors: Mohamed Darwish, King Owyang
  • Patent number: 6909170
    Abstract: A semiconductor package includes a leadframe which is cup-shaped and holds a semiconductor die. The leadframe is in electrical contact with a terminal on one side of the die, and the leads of the leadframe are bent in such a way that portions of the leads are coplanar with the other side of the die, which also contains one or more terminals. A plastic capsule is formed around the leadframe and die.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: June 21, 2005
    Assignee: Siliconix Incorporated
    Inventors: Mike Chang, King Owyang, Yueh-Se Ho, Y. Mohammed Kasem, Lixiong Luo, Wei-Bing Chu
  • Publication number: 20040121572
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the substrate. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place.
    Type: Application
    Filed: December 19, 2002
    Publication date: June 24, 2004
    Inventors: Mohamed N. Darwish, King Owyang
  • Patent number: 6744124
    Abstract: A semiconductor package includes a leadframe which is cup-shaped and holds a semiconductor die. The leadframe is in electrical contact with a terminal on one side of the die, and the leads of the leadframe are bent in such a way that portions of the leads are coplanar with the other side of the die, which also contains one or more terminals. A plastic capsule is formed around the leadframe and die.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: June 1, 2004
    Assignee: Siliconix Incorporated
    Inventors: Mike Chang, King Owyang, Yueh-Se Ho, Y. Mohammed Kasem, Lixiong Luo, Wei-Bing Chu
  • Publication number: 20030057532
    Abstract: A semiconductor package includes a leadframe which is cup-shaped and holds a semiconductor die. The leadframe is in electrical contact with a terminal on one side of the die, and the leads of the leadframe are bent in such a way that portions of the leads are coplanar with the other side of the die, which also contains one or more terminals. A plastic capsule is formed around the leadframe and die.
    Type: Application
    Filed: November 7, 2002
    Publication date: March 27, 2003
    Inventors: Mike Chang, King Owyang, Yueh-Se Ho, Y. Mohammed Kasem, Lixiong Luo, Wei-Bing Chu
  • Patent number: 5910669
    Abstract: A DMOS field effect transistor having its gate electrode located in a trench includes a lightly doped epitaxial layer overlying the usual epitaxial layer. The trench penetrates only part way through the upper epitaxial layer which is more lightly doped than is the underlying lower epitaxial layer. The lightly doped upper epitaxial layer reduces the electric field at the bottom of the trench, thus protecting the gate oxide from breakdown during high voltage operation. Advantageously the upper portion of the lightly doped upper epitaxial layer has little adverse effect on the transistor's on resistance.
    Type: Grant
    Filed: July 24, 1992
    Date of Patent: June 8, 1999
    Assignee: Siliconix incorporated
    Inventors: Mike F. Chang, Fwu-Iuan Hshieh, Sze-Hon Kwan, King Owyang
  • Patent number: 5767578
    Abstract: An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The passivation layer is a CVD diamond film which provides both electrical insulation and thermal conductivity. The substrate backside surface is removed (by grinding and/or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap.
    Type: Grant
    Filed: April 19, 1996
    Date of Patent: June 16, 1998
    Assignee: Siliconix incorporated
    Inventors: Mike F. Chang, King Owyang, Fwu-Iuan Hshieh, Yueh-Se Ho, Jowei Dun, Hans-Jurgen Fusser, Reinhard Zachai
  • Patent number: 5757081
    Abstract: An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The substrate backside surface is removed (by grinding or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap.
    Type: Grant
    Filed: February 20, 1996
    Date of Patent: May 26, 1998
    Assignee: Siliconix Incorporated
    Inventors: Mike F. Chang, King Owyang, Fwu-Iuan Hshieh, Yueh-Se Ho, Jowei Dun
  • Patent number: 5753529
    Abstract: An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The substrate backside surface is removed (by grinding or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: May 19, 1998
    Assignee: Siliconix incorporated
    Inventors: Mike F. Chang, King Owyang, Fwu-Iuan Hshieh, Yueh-Se Ho, Jowei Dun
  • Patent number: 5639676
    Abstract: A trenched DMOS transistor is fabricated using seven masking steps. One masking step defines both the P+ deep body regions and the active portions of the transistor which are masked using a LOCOS process. A second masking step defines the insulating oxide in the termination region. The insulating (oxide) layer in the termination region is thus thicker than in the active region of the transistor, thereby improving process control and reducing substrate contamination during processing. Additionally, the thicker field oxide in the termination region improves electric field distribution so that avalanche breakdown occurs in the cell (active) region rather than in the termination region, and thus breakdown voltage behavior is more stable and predictable.
    Type: Grant
    Filed: February 16, 1996
    Date of Patent: June 17, 1997
    Assignee: Siliconix incorporated
    Inventors: Fwu-Iuan Hshieh, Mike F. Chang, Yueh-Se Ho, King Owyang
  • Patent number: 5578851
    Abstract: A trenched DMOS transistor is fabricated using seven masking steps. One masking step defines both the P+ deep body regions and the active portions of the transistor which are masked using a LOCOS process. A second masking step defines the insulating oxide in the termination region. The insulating (oxide) layer in the termination region is thus thicker than in the active region of the transistor, thereby improving process control and reducing substrate contamination during processing. Additionally, the thicker field oxide in the termination region improves electric field distribution so that avalanche breakdown occurs in the cell (active) region rather than in the termination region, and thus breakdown voltage behavior is more stable and predictable.
    Type: Grant
    Filed: March 29, 1996
    Date of Patent: November 26, 1996
    Assignee: Siliconix incorporated
    Inventors: Fwu-Iuan Hshieh, Mike F. Chang, Yueh-Se Ho, King Owyang
  • Patent number: 5532179
    Abstract: A DMOS field effect transistor having its gate electrode located in a trench includes a lightly doped epitaxial layer overlying the usual epitaxial layer. The trench penetrates only part way through the upper epitaxial layer which is more lightly doped than is the underlying lower epitaxial layer. The lightly doped upper epitaxial layer reduces the electric field at the bottom of the trench, thus protecting the gate oxide from breakdown during high voltage operation. Advantageously the upper portion of the lightly doped upper epitaxial layer has little adverse effect on the transistor's on resistance.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: July 2, 1996
    Assignee: Siliconix Incorporated
    Inventors: Mike F. Chang, Fwu-Iuan Hshieh, Sze-Hon Kwan, King Owyang
  • Patent number: 5521409
    Abstract: A power MOSFET is created from a semiconductor body (2000 and 2001) having a main active area and a peripheral termination area. A first insulating layer (2002), typically of substantially uniform thickness, lies over the active and termination areas. A main polycrystalline portion (2003A/2003B) lies over the first insulating layer largely above the active area. First and second peripheral polycrystalline segments (2003C1 and 2003C2) lie over the first insulating layer above the termination area.A gate electrode (2016) contacts the main polycrystalline portion. A source electrode (2015A/2015B) contacts the active area, the termination area, and the first polycrystalline segment. An optional additional metal portion (2019) contacts the second polycrystalline segment. In this case, the second polycrystalline segment extends over a scribe-line section of the termination area so as to be scribed during a scribing operation.
    Type: Grant
    Filed: December 22, 1994
    Date of Patent: May 28, 1996
    Assignee: Siliconix Incorporated
    Inventors: Fwu-Iuan Hshieh, Mike Chang, Jun W. Chen, King Owyang, Dorman C. Pitzer, Jan Van Der Linde
  • Patent number: 5517379
    Abstract: A device for protecting battery-powered semiconductor devices and the like against a reverse battery condition. During normal operation a charge pump charges the gate of a power MOSFET, turning the MOSFET on and providing a low-resistance power supply path from the battery to the load. If the battery is reversed, a depletion mode device shorts the gate and source of the MOSFET, turning it off and disconnecting the load from the battery.
    Type: Grant
    Filed: May 26, 1993
    Date of Patent: May 14, 1996
    Assignee: Siliconix incorporated
    Inventors: Richard K. Williams, Thomas Toombs, King Owyang, Hamza Yilmaz
  • Patent number: 5468982
    Abstract: A trenched DMOS transistor has improved device performance and production yield. During fabrication the cell trench corners, i.e. the areas where two trenches intersect, are covered on the principal surface of the integrated circuit substrate with a blocking photoresist layer during the source region implant step in order to prevent (block) a channel from forming in these corner areas. Punch-through is thereby eliminated and reliability improved, while source/drain on-resistance is only slightly increased. The blocking of the trench corners creates a cutout structure at each trench corner, whereby the source region does not extend to the trench corner, but instead the underlying oppositely-doped body region extends to the trench corner.
    Type: Grant
    Filed: June 3, 1994
    Date of Patent: November 21, 1995
    Assignee: Siliconix Incorporated
    Inventors: Fwu-Iuan Hshieh, Sze-Hon Kwan, Mike F. Chang, Yueh-Se Ho, Jan Van Der Linde, King Owyang
  • Patent number: 5429964
    Abstract: A submicron channel length is achieved in cells having sharp corners, such as square cells, by blunting the corners of the cells. In this way, the three dimensional diffusion effect is minimized, and punch through is avoided. Techniques are discussed for minimizing defects in the shallow junctions used for forming the short channel, including the use of a thin dry oxide rather than a thicker steam thermal over the body contact area, a field shaping p+ diffusion to enhance breakdown voltage, and TCA gathering. Gate-source leakage is reduced with extrinsic gathering on the poly backside, and intrinsic gathering due to the choice of starting material. Five masking step and six masking step processes are also disclosed for manufacturing a power MOSFET structure. This power MOSFET structure has an active region with a plurality of active cells as well as a termination region with a field ring or a row of inactive cells and a polysilicon field plate.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: July 4, 1995
    Assignee: Siliconix incorporated
    Inventors: Hamza Yilmaz, Fwu-Iuan Hshieh, Mike Chang, Jun W. Chen, King Owyang, Dorman C. Pitzer, Jan Van Der Linde
  • Patent number: 5426325
    Abstract: Non-uniformly doped regions are formed adjacent to semiconductor junctions which underlie high voltage crossovers. The non-uniformly doped regions prevent junction breakdown caused by strong electric fields. The voltage drop between a crossover and an element of an integrated circuit is spread over the non-uniformly doped region, to lessen the voltage drop between the crossover and the junction and lessen the electric field at the junction. Dopant concentrations in the non-uniformly doped region may be selected to minimize use of silicon real estate. In some embodiments, a graded dopant concentration is lightest near the junction and increases toward a circuit element being protected.
    Type: Grant
    Filed: August 4, 1993
    Date of Patent: June 20, 1995
    Assignee: Siliconix Incorporated
    Inventors: Mike F. Chang, King Owyang, Richard K. Williams
  • Patent number: 5404040
    Abstract: A power MOSFET is created from a semiconductor body (2000 and 2001) having a main active area and a peripheral termination area. A first insulating layer (2002) of substantially uniform thickness lies over the active and termination areas. A main polycrystalline portion (2003A/2003B) lies over the first insulating layer largely above the active area. First and second peripheral polycrystalline segments (2003C1 and 2003C2) lie over the first insulating layer above the termination area.A gate electrode (2016) contacts the main polycrystalline portion. A source electrode (2015A/2015B) contacts the active area, the termination area, and the first polycrystalline segment. An optional additional metal portion (2019) contacts the second polycrystalline segment. The MOSFET is typically created by a five-mask process. A defreckle etch is performed subsequent to metal deposition and patterning to define the two peripheral polycrystalline segments.
    Type: Grant
    Filed: July 22, 1993
    Date of Patent: April 4, 1995
    Assignee: Siliconix incorporated
    Inventors: Fwu-Iuan Hshieh, Mike Chang, Jun W. Chen, King Owyang, Dorman C. Pitzer, Jan V. D. Linde