Patents by Inventor Kirby MAXEY

Kirby MAXEY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12278289
    Abstract: Embodiments disclosed herein comprise semiconductor devices with two dimensional (2D) semiconductor channels and methods of forming such devices. In an embodiment, the semiconductor device comprises a source contact and a drain contact. In an embodiment, a 2D semiconductor channel is between the source contact and the drain contact. In an embodiment, the 2D semiconductor channel is a shell.
    Type: Grant
    Filed: January 16, 2024
    Date of Patent: April 15, 2025
    Assignee: Intel Corporation
    Inventors: Kevin P. O'Brien, Carl Naylor, Chelsey Dorow, Kirby Maxey, Tanay Gosavi, Ashish Verma Penumatcha, Shriram Shivaraman, Chia-Ching Lin, Sudarat Lee, Uygar E. Avci
  • Publication number: 20250113547
    Abstract: Integrated circuit structures having internal spacers for 2D channel materials, and methods of fabricating integrated circuit structures having internal spacers for 2D channel materials, are described. For example, an integrated circuit structure includes a stack of two-dimensional (2D) material nanowires. A gate structure is vertically around the stack of 2D material nanowires. Internal gate spacers are between vertically adjacent ones of the stack of 2D material nanowires and laterally adjacent to the gate structure. The 2D material nanowires are recessed relative to the internal gate spacers. Conductive contact structures are at corresponding ends of the stack of 2D material nanowires, the conductive contact structures adjacent to the internal gate spacers and vertically overlapping with the internal gate spacers.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Inventors: Chia-Ching LIN, Tao CHU, Chiao-Ti HUANG, Guowei XU, Robin CHAO, Feng ZHANG, Yue ZHONG, Yang ZHANG, Ting-Hsiang HUNG, Kevin P. O’BRIEN, Uygar E. AVCI, Carl H. NAYLOR, Mahmut Sami KAVRIK, Andrey VYATSKIKH, Rachel STEINHARDT, Chelsey DOROW, Kirby MAXEY
  • Publication number: 20250113572
    Abstract: Techniques and mechanisms for forming a gate dielectric structure and source or drain (S/D) structures on a monolayer channel structure of a transistor. In an embodiment, the channel structure comprises a two-dimensional (2D) layer of a transition metal dichalcogenide (TMD) material. During fabrication of the transistor structure, a layer of a dielectric material is deposited on the channel structure, wherein the dielectric material is suitable to provide a reaction, with a plasma, to produce a conductive material. While a first portion of the dielectric material is covered by a patterned structure, a second portion of the dielectric material is exposed to a plasma treatment to form a source or dielectric (S/D) electrode structure that adjoins the first portion. In another embodiment, the dielectric material is an oxide of a Group V-VI transition metal.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Applicant: Intel Corporation
    Inventors: Mahmut Sami Kavrik, Uygar E. Avci, Kevi P. Obrien, Chia-Ching Lin, Carl H. Naylor, Kirby Maxey, Andrey Vyatskikh, Scott B. Clendenning, Matthew Metz, Marko Radosavljevic
  • Publication number: 20250113540
    Abstract: Techniques and mechanisms for providing gate dielectric structures of a transistor. In an embodiment, the transistor comprises a thin channel structure which comprises one or more layers of a transition metal dichalcogenide (TMD) material. The channel structure forms two surfaces on opposite respective sides thereof, wherein the surfaces extend to each of two opposing edges of the channel structure. A composite gate dielectric structure comprises first bodies of a first dielectric material, wherein the first bodies each adjoin a different respective one of the two opposing edges, and variously extend to each of the surfaces two surfaces. The composite gate dielectric structure further comprises another body of a second dielectric material other than the first dielectric material. In another embodiment, the other body adjoins one or both of the two surfaces, and extends along one or both of the two surfaces to each of the first bodies.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Applicant: Intel Corporation
    Inventors: Carl H. Naylor, Rachel Steinhardt, Mahmut Sami Kavrik, Chia-Ching Lin, Andrey Vyatskikh, Kevin O’Brien, Kirby Maxey, Ashish Verma Penumatcha, Uygar Avci, Matthew Metz, Chelsey Dorow
  • Publication number: 20250113521
    Abstract: A transition metal dichalcogenide (TMD) monolayer grown on a growth substrate is directly transferred to a target substrate. Eliminating the use of a carrier wafer in the TMD monolayer transfer process reduces the number of transfers endured by the TMD monolayer from two to one, which can result in less damage to the TMD monolayer. After a TMD monolayer is grown on a growth layer, a protective layer is formed on the TMD monolayer. The protective layer is bonded to the target substrate by a diffusion bonding layer. The direct transfer of TMD monolayers can be repeated to create a stack of TMD monolayers. A stack of TMD monolayers can be used in a field effect transistor, such as a nanoribbon field effect transistor.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Applicant: Intel Corporation
    Inventors: Andrey Vyatskikh, Paul B. Fischer, Paul Killian Nordeen, Uygar E. Avci, Mahmut Sami Kavrik, Ande Kitamura, Kirby Maxey, Carl Hugo Naylor, Kevin P. O'Brien
  • Publication number: 20250113599
    Abstract: Methods for doping 2D transistor devices and resulting architectures. The use and placement of oxide dopants, such as, but not limited to, GeOx, enable control over threshold voltage performance and contact resistance of 2D transistor devices. Architectures include distinct stoichiometry compositions.
    Type: Application
    Filed: September 28, 2023
    Publication date: April 3, 2025
    Applicant: Intel Corporation
    Inventors: Rachel A. Steinhardt, Kevin P. O'Brien, Ashish Verma Penumatcha, Carl Hugo Naylor, Kirby Maxey, Pratyush P. Buragohain, Chelsey Dorow, Mahmut Sami Kavrik, Wouter Mortelmans, Marko Radosavljevic, Uygar E. Avci, Matthew V. Metz
  • Publication number: 20250112122
    Abstract: Integrated circuit (IC) devices and systems with backside power gates, and methods of forming the same, are disclosed herein. In one embodiment, an integrated circuit die includes a device layer with one or more transistors, a first interconnect over the device layer, a second interconnect under the device layer, and one or more power gates under the device layer.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Applicant: INTEL CORPORATION
    Inventors: Kevin P. O'Brien, Paul Gutwin, David L. Kencke, Mahmut Sami Kavrik, Daniel Chanemougame, Ashish Verma Penumatcha, Carl Hugo Naylor, Kirby Maxey, Uygar E. Avci, Tristan A. Tronic, Chelsey Dorow, Andrey Vyatskikh, Rachel A. Steinhardt, Chia-Ching Lin, Chi-Yin Cheng, Yu-Jin Chen, Tyrone Wilson
  • Publication number: 20250113573
    Abstract: A low strain transfer protective layer is formed on a transition metal dichalcogenide (TMD) monolayer to enable the transfer of the TMD monolayer from a growth substrate to a target substrate with little or no strain-induced damage to the TMD monolayer. Transfer of a TMD monolayer from a growth substrate to a target substrate comprises two transfers, a first transfer from the growth substrate to a carrier wafer and a second transfer from the carrier wafer to the target substrate. Transfer of the TMD monolayer from the growth substrate to the carrier wafer comprises mechanically lifting off the TMD monolayer from the growth substrate. The low strain transfer protective layer can limit the amount of strain transferred from the carrier wafer to the TMD monolayer during lift-off. The carrier wafer and protective layer are separated from the TMD monolayer after attachment of the TMD monolayer to the target substrate.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 3, 2025
    Applicant: Intel Corporation
    Inventors: Andrey Vyatskikh, Paul B. Fischer, Uygar E. Avci, Chelsey Dorow, Mahmut Sami Kavrik, Karthik Krishnaswamy, Chia-Ching Lin, Jennifer Lux, Kirby Maxey, Carl Hugo Naylor, Kevin P. O'Brien, Justin R. Weber
  • Patent number: 12266720
    Abstract: Transistor structures with monocrystalline metal chalcogenide channel materials are formed from a plurality of template regions patterned over a substrate. A crystal of metal chalcogenide may be preferentially grown from a template region and the metal chalcogenide crystals then patterned into the channel region of a transistor. The template regions may be formed by nanometer-dimensioned patterning of a metal precursor, a growth promoter, a growth inhibitor, or a defected region. A metal precursor may be a metal oxide suitable, which is chalcogenated when exposed to a chalcogen precursor at elevated temperature, for example in a chemical vapor deposition process.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 1, 2025
    Assignee: Intel Corporation
    Inventors: Carl Naylor, Chelsey Dorow, Kevin O'Brien, Sudarat Lee, Kirby Maxey, Ashish Verma Penumatcha, Tanay Gosavi, Patrick Theofanis, Chia-Ching Lin, Uygar Avci, Matthew Metz, Shriram Shivaraman
  • Patent number: 12266712
    Abstract: A transistor includes a first channel layer over a second channel layer, where the first and the second channel layers include a monocrystalline transition metal dichalcogenide (TMD). The transistor structure further includes a source structure coupled to a first end of the first and second channel layers, a drain structure coupled to a second end of the first and second channel layers, a gate structure between the source material and the drain material, and between the first channel layer and the second channel layer. The transistor further includes a spacer laterally between the gate structure and the and the source structure and between the gate structure and the drain structure. A liner is between the spacer and the gate structure. The liner is in contact with the first channel layer and the second channel layer and extends between the gate structure and the respective source structure and the drain structure.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: April 1, 2025
    Assignee: Intel Corporation
    Inventors: Ashish Verma Penumatcha, Kevin O'Brien, Chelsey Dorow, Kirby Maxey, Carl Naylor, Tanay Gosavi, Sudarat Lee, Chia-Ching Lin, Seung Hoon Sung, Uygar Avci
  • Patent number: 12176388
    Abstract: A transistor structure includes a first channel layer over a second channel layer, where the first and the second channel layers include a monocrystalline transition metal dichalcogenide (TMD). The transistor structure further includes a source material coupled to a first end of the first and second channel layers, a drain material coupled to a second end of the first and second channel layers, a gate electrode between the source material and the drain material, and between the first channel layer and the second channel layer and a gate dielectric between the gate electrode and each of the first channel layer and the second channel layer.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: December 24, 2024
    Assignee: Intel Corporation
    Inventors: Kevin O'Brien, Chelsey Dorow, Kirby Maxey, Carl Naylor, Shriram Shivaraman, Sudarat Lee, Tanay Gosavi, Chia-Ching Lin, Uygar Avci, Ashish Verma Penumatcha
  • Patent number: 12125895
    Abstract: A transistor includes a channel including a first layer including a first monocrystalline transition metal dichalcogenide (TMD) material, where the first layer is stoichiometric and includes a first transition metal. The channel further includes a second layer above the first layer, the second layer including a second monocrystalline TMD material, where the second monocrystalline TMD material includes a second transition metal and oxygen, and where the second layer is sub-stoichiometric. The transistor further includes a gate electrode above a first portion of the channel layer, a gate dielectric layer between the channel layer and the gate electrode, a source contact on a second portion of the channel layer and a drain contact on a third portion of the channel layer, where the gate electrode is between drain contact and the source contact.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: October 22, 2024
    Assignee: Intel Corporation
    Inventors: Chelsey Dorow, Kevin O'Brien, Carl Naylor, Uygar Avci, Sudarat Lee, Ashish Verma Penumatcha, Chia-Ching Lin, Tanay Gosavi, Shriram Shivaraman, Kirby Maxey
  • Publication number: 20240222482
    Abstract: Devices, transistor structures, systems, and techniques are described herein related to field effect transistors having a doping layer on metal chalcogenide nanoribbons outside of the channel region. The doping layer is a metal oxide that shifts the electrical characteristics of the nanoribbons and is formed by depositing a metal and oxidizing the metal by exposure to ozone and ultraviolet light.
    Type: Application
    Filed: December 29, 2022
    Publication date: July 4, 2024
    Applicant: Intel Corporation
    Inventors: Kevin P. O'Brien, Rachel Steinhardt, Chelsey Dorow, Carl H. Naylor, Kirby Maxey, Sudarat Lee, Ashish Verma Penumatcha, Uygar Avci, Scott Clendenning, Tristan Tronic, Mahmut Sami Kavrik, Ande Kitamura
  • Publication number: 20240222428
    Abstract: A transistor has multiple channel regions coupling source and drain structures, and a seed material is between one of the source or drain structures and a channel material, which includes a metal and a chalcogen. Each channel region may include a nanoribbon. A nanoribbon may have a monocrystalline structure and a thickness of a monolayer, less than 1 nm. A nanoribbon may be free of internal grain boundaries. A nanoribbon may have an internal grain boundary adjacent an end opposite the seed material. The seed material may directly contact the first of the source or drain structures, and the channel material may directly contact the second of the source or drain structures.
    Type: Application
    Filed: December 29, 2022
    Publication date: July 4, 2024
    Applicant: Intel Corporation
    Inventors: Chelsey Dorow, Carl H. Naylor, Kirby Maxey, Kevin O'Brien, Ashish Verma Penumatcha, Chia-Ching Lin, Uygar Avci, Matthew Metz, Sudarat Lee, Ande Kitamura, Scott B. Clendenning, Mahmut Sami Kavrik
  • Publication number: 20240222461
    Abstract: A transistor in an integrated circuit (IC) die includes source and drain terminals having a bulk material enclosed by a liner material. A nanoribbon channel region couples the source and drain terminals. The nanoribbon may include a transition metal and a chalcogen. The liner material may contact ends and upper and lower surfaces of the nanoribbon. The transistor may be in an interconnect layer. The source and drain terminals may be formed by conformally depositing the liner material over the ends of the nanoribbon and in voids opened in the IC die.
    Type: Application
    Filed: December 29, 2022
    Publication date: July 4, 2024
    Applicant: Intel Corporation
    Inventors: Ande Kitamura, Carl H. Naylor, Kevin O'Brien, Kirby Maxey, Chelsey Dorow, Ashish Verma Penumatcha, Scott B. Clendenning, Uygar Avci, Matthew Metz, Chia-Ching Lin, Sudarat Lee, Mahmut Sami Kavrik, Carly Rogan, Paul Gutwin
  • Publication number: 20240222483
    Abstract: A transistor structure includes a stack of nanoribbons spanning between terminals of the transistor. Ends of the nanoribbons include silicon, and channel regions between the ends include a transition metal and a chalcogen. A gate structure over the channel regions includes an insulator between the channel regions and a gate electrode material. Contact regions may be formed by modifying portions of the channel regions by adding a dopant to, or altering the crystal structure of, the channel regions. The transistor structure may be in an integrated circuit device.
    Type: Application
    Filed: December 29, 2022
    Publication date: July 4, 2024
    Applicant: Intel Corporation
    Inventors: Carl H. Naylor, Kirby Maxey, Kevin O’Brien, Chelsey Dorow, Sudarat Lee, Ashish Verma Penumatcha, Uygar Avci, Matthew Metz, Scott B. Clendenning, Chia-Ching Lin, Ande Kitamura, Mahmut Sami Kavrik
  • Publication number: 20240222484
    Abstract: Transistors and integrated circuitry including a 2D channel material layer within a stack of material layers further including one or more insulator (e.g., dielectric) materials above and/or below the 2D channel material layer. These supporting insulator layers may be non-sacrificial while other material layers within a starting material stack may be sacrificial, replaced, for example, with gate insulator and/or gate material. In some exemplary embodiments, the 2D channel material is a metal chalcogenide and the supporting insulator layer is advantageously a dielectric material composition having a low dielectric constant.
    Type: Application
    Filed: December 30, 2022
    Publication date: July 4, 2024
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Kevin P. O'Brien, Ashish Verma Penumatcha, Chelsey Dorow, Kirby Maxey, Carl H. Naylor, Tao Chu, Guowei Xu, Uygar Avci, Feng Zhang, Ting-Hsiang Hung, Ande Kitamura, Mahmut Sami Kavrik
  • Publication number: 20240222113
    Abstract: Integrated circuit (IC) structures comprising transistors with metal chalcogenide channel material synthesized on a workpiece comprising a Group IV crystal. Prior to synthesis of the metal chalcogenide material, a passivation material is formed over the Group IV crystal to limit exposure of the substrate to the growth precursor gas(es) and thereby reduce a quantity of chalcogen species subsequently degassed from the workpiece. The passivation material may be applied to the front side, back side, and/or edge of a workpiece. The passivation material may be sacrificial or retained as a permanent feature of an IC structure. The passivation material may be advantageously amorphous and/or a compound comprising at least one of a metal or nitrogen that is good diffusion barrier and thermally stable at the metal chalcogenide synthesis temperatures.
    Type: Application
    Filed: December 29, 2022
    Publication date: July 4, 2024
    Applicant: Intel Corporation
    Inventors: Carl H. Naylor, Kirby Maxey, Kevin OBrien, Chelsey Dorow, Sudarat Lee, Ashish Verma Penumatcha, Uygar Avci, Matthew Metz, Scott B. Clendenning, Mahmut Sami Kavrik, Chia-Ching Lin, Ande Kitamura
  • Publication number: 20240222073
    Abstract: This disclosure describes systems, apparatus, methods, and devices related to ion beams fabrication. A device may overlay a wafer assembly of one or more layers with a top layer comprised of a material having 2D material characteristics. The device may be fabricated by applying an ion beam targeted to at least one of one or more regions of the top layer or a resist layer placed on top of the top layer, wherein the ion beam is tuned using a predetermined energy range or a dosing level of ions to modify material characteristics of the resist layer or to perform milling of the top layer or other layers of the one or more layers of the wafer assembly.
    Type: Application
    Filed: December 28, 2022
    Publication date: July 4, 2024
    Inventors: Shida Tan, Uygar Avci, Brandon Holybee, Kirby Maxey, Kevin O'Brien, Mahmut Sami Kavrik
  • Publication number: 20240186416
    Abstract: Embodiments disclosed herein comprise semiconductor devices with two dimensional (2D) semiconductor channels and methods of forming such devices. In an embodiment, the semiconductor device comprises a source contact and a drain contact. In an embodiment, a 2D semiconductor channel is between the source contact and the drain contact. In an embodiment, the 2D semiconductor channel is a shell.
    Type: Application
    Filed: January 16, 2024
    Publication date: June 6, 2024
    Inventors: Kevin P. O'Brien, Carl NAYLOR, Chelsey DOROW, Kirby MAXEY, Tanay GOSAVI, Ashish Verma PENUMATCHA, Shriram SHIVARAMAN, Chia-Ching LIN, Sudarat LEE, Uygar E. AVCI