Patents by Inventor Kirk D. Peterson

Kirk D. Peterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080224186
    Abstract: A pixel sensor cell of improved dynamic range comprises a coupling transistor that couples a capacitor device to a photosensing region (e.g., photodiode) of the pixel cell, the photodiode being coupled to a transfer gate and one terminal of the coupling transistor. In operation, the additional capacitance is coupled to the pixel cell photodiode when the voltage on the photodiode is drawn down to the substrate potential. Thus, the added capacitance is only connected to the imager cell when the cell is nearing its charge capacity. Otherwise, the cell has a low capacitance and low leakage. In an additional embodiment, a terminal of the capacitor is coupled to a “pulsed” supply voltage signal that enables substantially full depletion of stored charge from the capacitor to the photosensing region during a read out operation of the pixel sensor cell. In various embodiments, the locations of the added capacitance and photodiode may be interchanged with respect to the coupling transistor.
    Type: Application
    Filed: March 16, 2007
    Publication date: September 18, 2008
    Applicant: International Business Machines Corporation
    Inventors: John J Ellis-Monaghan, Alain Loiseau, Kirk D. Peterson
  • Publication number: 20080168318
    Abstract: A voltage identifier (VID) sorting system is provided that optimizes processor power and operating voltage guardband at a constant processor frequency. The VID sorting system determines a voltage versus current curve for the processor. The VID sorting system then uses the voltage versus current characteristics to calculate the power for each VID to determine an acceptable range of VIDs within the maximum power criteria. The VID sorting system then tests VIDs in the range and selects a VID from the range to optimize for minimum power and/or maximum voltage guardband at a constant processor frequency.
    Type: Application
    Filed: January 10, 2007
    Publication date: July 10, 2008
    Inventors: Jonathan J. DeMent, Sang H. Dhong, Gilles Gervais, Alain Loiseau, Kirk D. Peterson, John L. Sinchak
  • Publication number: 20080156257
    Abstract: A cluster tool is provided for the implementing of a clustered and integrated surface pre-cleaning of the surface of semiconductor devices. More particularly, there is provided a cluster tool and a method of utilization thereof in an integrated semiconductor device surface pre-cleaning, which is directed towards a manufacturing aspect in which a chamber for performing a dry processing chemical oxide removal (COR) on the semiconductor device surface is clustered with other tools, such as a metal deposition tool for silicide or contact formation, including the provision of a vacuum transfer module in the cluster tool.
    Type: Application
    Filed: October 16, 2007
    Publication date: July 3, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sadanand V. Deshpande, Ying Li, Kevin E. Mello, Renee T. Mo, Wesley C. Natzle, Kirk D. Peterson, Robert J. Purtell
  • Patent number: 7393701
    Abstract: Methods of adjusting a resistance of a buried resistor in a semiconductor are disclosed. In one aspect, the method includes using a silicidation blocking mask to define the buried resistor in the semiconductor; adjusting a size of the silicidation blocking mask to adjust a resistance of the buried resistor based on test data from a previous processing lot including a substantially similar buried resistor; and forming silicide on an area not covered by the silicidation blocking mask. The adjustment may be made by balancing the amount of the resistor that is covered with silicide versus un-silicided semiconductor to achieve the desired total resistance. The adjustment may be made according to an algorithm.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Douglas B. Hershberger, Alain Loiseau, Kirk D. Peterson, Robert M. Rassel
  • Publication number: 20080131980
    Abstract: Methods of adjusting a resistance of a buried resistor in a semiconductor are disclosed. In one aspect, the method includes using a silicidation blocking mask to define the buried resistor in the semiconductor; adjusting a size of the silicidation blocking mask to adjust a resistance of the buried resistor based on test data from a previous processing lot including a substantially similar buried resistor; and forming silicide on an area not covered by the silicidation blocking mask. The adjustment may be made by balancing the amount of the resistor that is covered with silicide versus un-silicided semiconductor to achieve the desired total resistance. The adjustment may be made according to an algorithm.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Applicant: International Business Machines Corporation
    Inventors: Douglas B. Hershberger, Alain Loiseau, Kirk D. Peterson, Robert M. Rassel
  • Patent number: 7344962
    Abstract: Disclosed is a method of manufacturing dual orientation wafers. A trench is formed in a multi-layer wafer to a silicon substrate with a first crystalline orientation. The trench is filled with a silicon material (e.g., amorphous silicon or polysilicon trench). Isolation structures are formed to isolate the silicon material in the trench from a semiconductor layer with a second crystalline orientation. Additional isolation structures are formed within the silicon material in the trench and within the semiconductor layer. A patterned amorphization process is performed on the silicon material in the trench and followed by a recrystallization anneal such that the silicon material in the trench recrystallizes with the same crystalline orientation as the silicon substrate. The resulting structure is a semiconductor wafer with isolated semiconductor areas on the same plane having different crystalline orientations as well as isolated sections within each semiconductor area for device formation.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: March 18, 2008
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, John J. Ellis-Monaghan, Alain Loiseau, Kirk D. Peterson
  • Patent number: 7344983
    Abstract: A cluster tool is provided for the implementing of a clustered and integrated surface pre-cleaning of the surface of semiconductor devices. More particularly, there is provided a cluster tool and a method of utilization thereof in an integrated semiconductor device surface pre-cleaning, which is directed towards a manufacturing aspect in which a chamber for performing a dry processing chemical oxide removal (COR) on the semiconductor device surface is clustered with other tools, such as a metal deposition tool for silicide or contact formation, including the provision of a vacuum transfer module in the cluster tool.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: March 18, 2008
    Assignee: International Business Machines Corporation
    Inventors: Sadanand V. Deshpande, Ying Li, Kevin E. Mello, Renee T. Mo, Wesley C. Natzle, Kirk D. Peterson, Robert J. Purtell
  • Publication number: 20080029844
    Abstract: An anti-fuse structure and a related method for fabricating the anti-fuse structure include a doped well within a semiconductor substrate. A first aperture and a second aperture that expose the doped well are located within a dielectric layer located over the semiconductor substrate and the doped well. A first conductor layer is located within the first aperture and a second conductor layer is located within the second aperture. At least a first anti-fuse material layer contacts the first conductor layer. The first conductor layer and the second conductor layer may comprise doped conductor materials that upon fusing of the anti-fuse structure provide an anti-fuse diode or an anti-fuse resistor.
    Type: Application
    Filed: August 3, 2006
    Publication date: February 7, 2008
    Inventors: James W. Adkisson, Jeffrey P. Gambino, Kirk D. Peterson, William R. Tonti
  • Patent number: 7315066
    Abstract: A semiconductor structure and method for forming the same. The structure includes a hybrid orientation block having first and second silicon regions having different lattice orientations. The first silicon region is directly on the block, while the second silicon region is physically isolated from the block by a dielectric region. First and second transistors are formed on the first and second regions, respectively. Also, first and second doped discharge prevention structures are formed on the block wherein the first doped discharge prevention structure prevents discharge damage to the first transistor, whereas the second doped discharge prevention structure prevents discharge damage to the second transistor during a plasma process. During the normal operation of the first and second transistors, the first and second discharge prevention structures behave like dielectric regions.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: January 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: James W. Atkisson, Jeffrey P. Gambino, Alain Loiseau, Kirk D. Peterson
  • Patent number: 7303952
    Abstract: A method of fabricating polysilicon lines and polysilicon gates, the method of including: providing a substrate; forming a dielectric layer on a top surface of the substrate; forming a polysilicon layer on a top surface of the dielectric layer; implanting the polysilicon layer with N-dopant species, the N-dopant species about contained within the polysilicon layer; implanting the polysilicon layer with a nitrogen containing species, the nitrogen containing species essentially contained within the polysilicon layer.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: December 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John J. Ellis-Monaghan, Glenn C. MacDougall, Dale W. Martin, Kirk D. Peterson, Bruce W. Porth
  • Patent number: 7265013
    Abstract: A structure fabrication method. The method comprises providing a structure which comprises (a) a to-be-etched layer, (b) a memory region, (c) a positioning region, (d) and a capping region on top of one another. Then, the positioning region is indented. Then, a conformal protective layer is formed on exposed-to-ambient surfaces of the structure. Then, portions of the conformal protective layer are removed so as to expose the capping region to the surrounding ambient without exposing the memory region to the surrounding ambient. Then, the capping region is removed so as to expose the positioning region to the surrounding ambient. Then, the positioning region is removed so as to expose the memory region to the surrounding ambient. Then, the memory region is directionally etched with remaining portions of the conformal protection layer serving as a blocking mask.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: September 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Kirk D. Peterson
  • Patent number: 7232711
    Abstract: An integrated circuit and method of fabricating the integrated circuit. The integrated circuit, including: one or more power distribution networks; one or more ground distribution networks; one or more data networks; and fuses temporarily and electrically connecting power, ground or data wires of the same or different networks together, the same or different networks selected from the group consisting of the one or more power distribution networks, the one or more ground distribution networks, the one or more data networks, and combinations thereof.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: June 19, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Kirk D. Peterson
  • Patent number: 6949796
    Abstract: A halo implant method for forming halo regions of at least first and second transistors formed on a same semiconductor substrate. The first transistor comprises a first gate region disposed between first and second semiconductor regions. The second transistor comprises a second gate region disposed between third and fourth semiconductor regions. The method comprises the steps of, in turn, halo-implanting each of the first, second, third, and fourth semiconductor regions, with the other three semiconductor regions being masked, in a projected direction which (i) is essentially perpendicular to the direction of the respective gate region and (ii) points from the halo-implanted semiconductor region to the respective gate region.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: September 27, 2005
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Kirk D. Peterson, Jeffrey S. Zimmerman
  • Patent number: 6793735
    Abstract: A method and apparatus are provided for forming a silicide on a semiconductor substrate by integrating under a constant vacuum the processes of removing an oxide from a surface of a semiconductor substrate and depositing a metal on the cleaned surface without exposing the cleaned surface to air. The method and apparatus of the present invention eliminates the exposure of the cleaned substrate to air between the oxide removal and metal deposition steps. This in-situ cleaning of the silicon substrate prior to cobalt deposition provides a cleaner silicon substrate surface, resulting in enhanced formation of cobalt silicide when the cobalt layer is annealed.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: September 21, 2004
    Assignee: International Business Machines Corporation
    Inventors: Marc W. Cantell, Jerome B. Lasky, Ronald J. Line, William J. Murphy, Kirk D. Peterson, Prabhat Tiwari
  • Patent number: 6660664
    Abstract: A process of forming a nitride film on a semiconductor substrate including exposing a surface of the substrate to a rapid thermal process to form the nitride film.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: December 9, 2003
    Assignee: International Business Machines Corp.
    Inventors: James W. Adkisson, Arne W. Ballantine, Matthew D. Gallagher, Peter J. Geiss, Jeffrey D. Gilbert, Shwu-Jen Jeng, Donna K. Johnson, Robb A. Johnson, Glen L. Miles, Kirk D. Peterson, James J. Toomey, Tina Wagner
  • Patent number: 6660596
    Abstract: A double gated silicon-on-insulator (SOI) MOSFET is fabricated by using a mandrel shallow trench isolation formation process, followed by a damascene gate. The double gated MOSFET features narrow diffusion lines defined sublithographically or lithographically and shrunk, damascene process defined by an STI-like mandrel process. The double gated SOI MOSFET increases current drive per layout width and provides low out conductance.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: December 9, 2003
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John A. Bracchitta, John J. Ellis-Monaghan, Jerome B. Lasky, Effendi Leobandung, Kirk D. Peterson, Jed H. Rankin
  • Patent number: 6510394
    Abstract: A system and method is provided for monitoring a voltage level of a charge pump device. The system and method employ a first charging device that is coupled to an output of a charge pump through a switching system. The first charging device is then decoupled from the output of the charge pump device and coupled to a second charging device. The charge on the first charging device is then redistributed between the first charging device and the second charging device. The output of the second charging device is a reduced voltage (e.g., below 5 volts) based on the ratio of the charge distribution between the first and second charging devices. The output of the second charging device can then be compared to a reference voltage to determine if the voltage of the charge pump device is at an adequate voltage level.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: January 21, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Congzhong Huang, Fredrick W. Trafton, Kirk D. Peterson
  • Patent number: 6483156
    Abstract: A double gated silicon-on-insulator (SOI) MOSFET is fabricated by using a mandrel shallow trench isolation formation process, followed by a damascene gate. The double gated MOSFET features narrow diffusion lines defined sublithographically or lithographically and shrunk, damascene process defined by an STI-like mandrel process. The double gated SOI MOSFET increases current drive per layout width and provides low out conductance.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: November 19, 2002
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John A. Bracchitta, John J. Ellis-Monaghan, Jerome B. Lasky, Effendi Leobandung, Kirk D. Peterson, Jed H. Rankin
  • Publication number: 20020153587
    Abstract: A double gated silicon-on-insulator (SOI) MOSFET is fabricated by using a mandrel shallow trench isolation formation process, followed by a damascene gate. The double gated MOSFET features narrow diffusion lines defined sublithographically or lithographically and shrunk, damascene process defined by an STI-like mandrel process. The double gated SOI MOSFET increases current drive per layout width and provides low out conductance.
    Type: Application
    Filed: July 2, 2002
    Publication date: October 24, 2002
    Applicant: International Business Machines Corporation
    Inventors: James W. Adkisson, John A. Bracchitta, John J. Ellis-Monaghan, Jerome B. Lasky, Effendi Leobandung, Kirk D. Peterson, Jed H. Rankin
  • Publication number: 20020107646
    Abstract: A system and method is provided for monitoring a voltage level of a charge pump device. The system and method employ a first charging device that is coupled to an output of a charge pump through a switching system. The first charging device is then decoupled from the output of the charge pump device and coupled to a second charging device. The charge on the first charging device is then redistributed between the first charging device and the second charging device. The output of the second charging device is a reduced voltage (e.g., below 5 volts) based on the ratio of the charge distribution between the first and second charging devices. The output of the second charging device can then be compared to a reference voltage to determine if the voltage of the charge pump device is at an adequate voltage level.
    Type: Application
    Filed: February 2, 2001
    Publication date: August 8, 2002
    Inventors: Congzhong Huang, Fredrick W. Trafton, Kirk D. Peterson