Patents by Inventor Kirk D. Prall

Kirk D. Prall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6924186
    Abstract: A novel technique to quench electrical defects in CVD Al2O3 layers is disclosed. A small amount of silicon dopant to the aluminum oxide film reduces the leakage current as well as the gap interface trap density at the dielectric/silicon interface. The implanted silicon gives a better interface and improves the leakage characteristics of the dielectric.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: August 2, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Kirk D. Prall
  • Patent number: 6882003
    Abstract: A method for forming a flash memory device having a local interconnect connecting source regions of a plurality of transistors within a sector allows for a highly-selective wet etch of a dielectric region overlying the source region. An embodiment of the method comprises the use of an etch-resistant layer covering various features such as any gate oxide remaining over the source region, spacers along sidewalls of the transistor stacks, and a capping layer of the transistor. An in-process semiconductor device resulting from the inventive method is also disclosed.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: April 19, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Kirk D. Prall, Chun Chen
  • Patent number: 6858526
    Abstract: The invention encompasses methods of forming insulating materials between conductive elements. In one aspect, the invention includes a method of forming a material adjacent a conductive electrical component comprising: a) partially vaporizing a mass to form a matrix adjacent the conductive electrical component, the matrix having at least one void within it. In another aspect, the invention includes a method of forming a material between a pair of conductive electrical components comprising the following steps: a) forming a pair of conductive electrical components within a mass and separated by an expanse of the mass; b) forming at least one support member within the expanse of the mass, the support member not comprising a conductive interconnect; and c) vaporizing the expanse of the mass to a degree effective to form at least one void between the support member and each of the pair of conductive electrical components.
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: February 22, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Werner Juengling, Kirk D. Prall, Ravi Iyer, Gurtej S. Sandhu, Guy Blalock
  • Patent number: 6845039
    Abstract: A method is provided for programming a memory cell of an electrically erasable programmable read only memory. The memory cell is fabricated on a substrate and comprises a source region, a drain region, a floating gate, and a control gate. The memory cell has a threshold voltage selectively configurable into one of at least three programming states. The method includes generating a drain current between the drain region and the source region by applying a drain-to-source bias voltage between the drain region and the source region. The method further includes injecting hot electrons from the drain current to the floating gate by applying a gate voltage to the control gate. A selected threshold voltage for the memory cell corresponding to a selected one of the programming states is generated by applying a selected constant drain-to-source bias voltage and a selected gate voltage.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: January 18, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Chun Chen, Kirk D. Prall
  • Patent number: 6835619
    Abstract: A method of forming a memory transistor includes providing a substrate comprising semiconductive material and forming spaced-apart source/drain structures. At least one of the source/drain structures forms a Schottky contact to the semiconductive material. The method also includes forming a memory gate between the spaced-apart source/drain structures and forming a control gate disposed operatively over the memory gate.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: December 28, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Kirk D. Prall
  • Publication number: 20040224465
    Abstract: A process for enhancing refresh in Dynamic Random Access Memories wherein n-type impurities are implanted into the capacitor buried contact after formation of the access transistor components. The process comprises forming a gate insulating layer on a substrate and a transistor gate electrode on the gate insulating layer. First and second transistor source/drain regions are formed on the substrate adjacent to opposite sides of the gate electrodes. N-type impurities, preferably phosphorous atoms, are then implanted into the first source/drain region which will serve as the capacitor buried contact.
    Type: Application
    Filed: June 8, 2004
    Publication date: November 11, 2004
    Inventors: Kirk D. Prall, Robert Kerr, Christopher Murphy, D. Mark Durcan
  • Patent number: 6812160
    Abstract: Methods of forming insulating materials between conductive elements include forming a material adjacent a conductive electrical component comprising: partially vaporizing a mass to form a matrix adjacent the conductive electrical component, the matrix having at least one void within it. Other methods include forming a material between a pair of conductive electrical components comprising: forming a pair of conductive electrical components within a mass and separated by an expanse of the mass; forming at least one support member within the expanse of the mass, the support member not comprising a conductive interconnect; and vaporizing the expanse of the mass to a degree effective to form at least one void between the support member and each of the pair of conductive electrical components. Some embodiments include an insulating material adjacent a conductive electrical component, such material comprising a matrix and at least one void within the matrix.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: November 2, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Werner Juengling, Kirk D. Prall, Ravi Iyer, Gurtej S. Sandhu, Guy Blalock
  • Publication number: 20040191988
    Abstract: A novel technique to quench electrical defects in CVD Al2O3 layers is disclosed. A small amount of silicon dopant to the aluminum oxide film reduces the leakage current as well as the gap interface trap density at the dielectric/silicon interface. The implanted silicon gives a better interface and improves the leakage characteristics of the dielectric.
    Type: Application
    Filed: April 1, 2004
    Publication date: September 30, 2004
    Inventors: Sukesh Sandhu, Kirk D. Prall
  • Patent number: 6791140
    Abstract: A method of forming a memory transistor includes providing a substrate comprising semiconductive material and forming spaced-apart source/drain structures. At least one of the source/drain structures forms a Schottky contact to the semiconductive material. The method also includes forming a memory gate between the spaced-apart source/drain structures and forming a control gate disposed operatively over the memory gate.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: September 14, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Kirk D. Prall
  • Patent number: 6777732
    Abstract: A process for enhancing refresh in Dynamic Random Access Memories wherein n-type impurities are implanted into the capacitor buried contact after formation of the access transistor components. The process comprises forming a gate insulating layer on a substrate and a transistor gate electrode on the gate insulating layer. First and second transistor source/drain regions are formed on the substrate adjacent to opposite sides of the gate electrodes. N-type impurities, preferably phosphorous atoms, are then implanted into the first source/drain region which will serve as the capacitor buried contact.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: August 17, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Kirk D. Prall, Robert Kerr, Christopher Murphy, D. Mark Durcan
  • Publication number: 20040130934
    Abstract: An array of memory cells configured to store at least one bit per one F2 includes substantially vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array. The structures providing the electronic memory function are configured to store more than one bit per gate. The array also includes electrical contacts to the memory cells including the substantially vertical structures. The cells can be programmed to have one of a number of charge levels trapped in the gate insulator adjacent to the first source/drain region such that the channel region has a first voltage threshold region (Vt1) and a second voltage threshold region (Vt2) and such that the programmed cell operates at reduced drain source current.
    Type: Application
    Filed: December 16, 2003
    Publication date: July 8, 2004
    Applicant: Micron Technology, Inc.
    Inventors: Kirk D. Prall, Leonard Forbes
  • Patent number: 6750502
    Abstract: A novel technique to quench electrical defects in CVD Al2O3 layers is disclosed. A small amount of silicon dopant to the aluminum oxide film reduces the leakage current as well as the gap interface trap density at the dielectric/silicon interface. The implanted silicon gives a better interface and improves the leakage characteristics of the dielectric.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: June 15, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Sukesh Sandhu, Kirk D. Prall
  • Patent number: 6750494
    Abstract: A removable oxide spacer is used to reduce the size of a contact opening in a memory cell between polysilicon word lines below a lithographic minimum. The removable spacer is deposited before the buried contact patterning and etching. Since word lines diverge at a cell location, the removable spacer retains a lesser thickness over the divergent area contact opening and a greater thickness elsewhere between word lines due to the more narrow gap therebetween and the spacer being deposited such that it fills the gap. The removable spacer reduces the buried contact size since the actual self-aligned contact area is defined by the spacer sidewall. The removable spacer is formed of materials having higher etching selectivity relative to materials forming underlying structures. Etching of the spacer creates a buried contact opening smaller than a lithographic minimum because silicon oxide surrounding the buried contact area is protected by the removable spacer.
    Type: Grant
    Filed: April 9, 1999
    Date of Patent: June 15, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Kirk D. Prall
  • Patent number: 6737320
    Abstract: The present invention provides a method and apparatus for forming a double-doped polysilicon floating gate in a semiconductor memory element. The method includes forming a first dielectric layer on a semiconductor substrate and forming a floating gate above the first dielectric layer, the floating gate comprised of a first layer doped with a first type of dopant material and a second layer doped with a second type of dopant material that is opposite the first type of dopant material in the first layer. The method further includes forming a second dielectric layer above the floating gate, forming a control gate above the second dielectric layer, and forming a source and a drain in the substrate.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: May 18, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Chun Chen, Kirk D. Prall
  • Publication number: 20040056316
    Abstract: A method for forming a flash memory device having a local interconnect connecting source regions of a plurality of transistors within a sector allows for a highly-selective wet etch of a dielectric region overlying the source region. An embodiment of the method comprises the use of an etch-resistant layer covering various features such as any gate oxide remaining over the source region, spacers along sidewalls of the transistor stacks, and a capping layer of the transistor. An in-process semiconductor device resulting from the inventive method is also disclosed.
    Type: Application
    Filed: September 22, 2003
    Publication date: March 25, 2004
    Inventors: Kirk D. Prall, Chun Chen
  • Publication number: 20040043561
    Abstract: The present invention provides a method and apparatus for forming a double-doped polysilicon floating gate in a semiconductor memory element. The method includes forming a first dielectric layer on a semiconductor substrate and forming a floating gate above the first dielectric layer, the floating gate comprised of a first layer doped with a first type of dopant material and a second layer doped with a second type of dopant material that is opposite the first type of dopant material in the first layer. The method further includes forming a second dielectric layer above the floating gate, forming a control gate above the second dielectric layer, and forming a source and a drain in the substrate.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 4, 2004
    Inventors: Chun Chen, Kirk D. Prall
  • Publication number: 20040041214
    Abstract: An array of memory cells configured to store at least one bit per one F2 includes substantially vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array. The structures providing the electronic memory function are configured to store more than one bit per gate. The array also includes electrical contacts to the memory cells including the substantially vertical structures.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 4, 2004
    Inventor: Kirk D. Prall
  • Publication number: 20040041176
    Abstract: An array of memory cells configured to store at least one bit per one F2 includes substantially vertical structures providing an electronic memory function spaced apart a distance equal to one half of a minimum pitch of the array. The structures providing the electronic memory function are configured to store more than one bit per gate. The array also includes electrical contacts to the memory cells including the substantially vertical structures.
    Type: Application
    Filed: May 12, 2003
    Publication date: March 4, 2004
    Inventor: Kirk D. Prall
  • Publication number: 20040029370
    Abstract: A method of forming a memory transistor includes providing a substrate comprising semiconductive material and forming spaced-apart source/drain structures. At least one of the source/drain structures forms a Schottky contact to the semiconductive material. The method also includes forming a memory gate between the spaced-apart source/drain structures and forming a control gate disposed operatively over the memory gate.
    Type: Application
    Filed: March 19, 2003
    Publication date: February 12, 2004
    Inventor: Kirk D. Prall
  • Publication number: 20040029322
    Abstract: A method of forming a memory transistor includes providing a substrate comprising semiconductive material and forming spaced-apart source/drain structures. At least one of the source/drain structures forms a Schottky contact to the semiconductive material. The method also includes forming a memory gate between the spaced-apart source/drain structures and forming a control gate disposed operatively over the memory gate.
    Type: Application
    Filed: August 8, 2002
    Publication date: February 12, 2004
    Inventor: Kirk D. Prall