Patents by Inventor Kiyoko Yamanaka

Kiyoko Yamanaka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10324107
    Abstract: Provided is a highly reliable acceleration sensor having little 0-point drift. For example, an acceleration sensor having a support substrate having a first direction and a second direction orthogonal thereto in a single surface, a device layer disposed on the support substrate with a space interposed therebetween and having a weight that deforms according to the application of acceleration, and a cap layer disposed on the device layer with a space interposed therebetween, wherein a fixed part fixed to the support substrate is provided in the center of the weight, a beam is provided that extends from the fixed part and makes the weight mobile by being connected thereto, a plurality of posts for coupling the support substrate and the cap layer are disposed on the fixed part, and electric signals are applied to and received from the weight via the posts.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: June 18, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Heewon Jeong, Masahide Hayashi, Kiyoko Yamanaka, Daisuke Maeda
  • Patent number: 9970956
    Abstract: A movable part rotates about a rotation axis, which passes through a support, when an inertial force in a detecting direction is applied to an inertial sensor. The movable part includes a first region and a second region displaced in a direction opposite to a direction of the first region when the inertial force is applied. A second substrate includes first and second detection electrodes opposed to the first and second regions, respectively. The first detection electrode and the second detection electrode are provided symmetrically with respect to the rotation axis. A cavity is provided symmetrically with respect to the rotation axis. In a direction perpendicular to the detecting direction and a direction in which the rotation axis extends, a length from the rotation axis to an end of the first region and a length from the rotation axis to an end of the second region are different.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 15, 2018
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Yuhua Zhang, Heewon Jeong, Kiyoko Yamanaka, Masahide Hayashi
  • Patent number: 9804188
    Abstract: An inertial sensor not susceptible to temperature change and vibration disturbance in an implementation environment of the inertial sensor is provided. In the present invention, for example, as illustrated in FIG. 9, an extending portion EXU is provided so as to connect to a fixing portion FU3, this extending portion EXU and a third region P3 which configures part of a mass body MS are connected via a support beam BM3 and a support beam BM4, and the support beam BM3 and the support beam BM4 are disposed oppositely with respect to a virtual line IL1. With this, natural frequency of an unwanted mode due to rotation and torsion of the mass body MS can be shifted to a high frequency band.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: October 31, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Heewon Jeong, Kiyoko Yamanaka, Masahide Hayashi
  • Publication number: 20170219620
    Abstract: Provided is a highly reliable acceleration sensor having little 0-point drift. For example, an acceleration sensor having a support substrate having a first direction and a second direction orthogonal thereto in a single surface, a device layer disposed on the support substrate with a space interposed therebetween and having a weight that deforms according to the application of acceleration, and a cap layer disposed on the device layer with a space interposed therebetween, wherein a fixed part fixed to the support substrate is provided in the center of the weight, a beam is provided that extends from the fixed part and makes the weight mobile by being connected thereto, a plurality of posts for coupling the support substrate and the cap layer are disposed on the fixed part, and electric signals are applied to and received from the weight via the posts.
    Type: Application
    Filed: April 8, 2015
    Publication date: August 3, 2017
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Heewon JEONG, Masahide HAYASHI, Kiyoko YAMANAKA, Daisuke MAEDA
  • Patent number: 9568490
    Abstract: Provided is an angular velocity sensor including a plurality of angular velocity detection units each outputting a different detection result, and including a common driving circuit to drive the angular velocity detection units. The angular velocity detection units of the angular velocity sensor of the present invention are configured to have different driving amplitudes when being driven by a driving signal at the same frequency.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 14, 2017
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Heewon Jeong, Masahide Hayashi, Kiyoko Yamanaka
  • Patent number: 9511993
    Abstract: A semiconductor physical quantity detection sensor includes (1) a first electrostatic capacitance formed by the movable electrode, and a first fixed electrode formed in a first conductive layer shared with the movable electrode, (2) a second electrostatic capacitance that is formed by the movable electrode, and a second fixed electrode formed in a second conductive layer different in a height from a substrate surface from the movable electrode, and (3) an arithmetic circuit that calculates the physical quantity on the basis of a change in the first and second electrostatic capacitances generated when the physical quantity is applied. In this configuration, an electric signal from the first electrostatic capacitance, and an electric signal from the second electrostatic capacitance are input to the arithmetic circuit.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: December 6, 2016
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kiyoko Yamanaka, Heewon Jeong, Chisaki Takubo
  • Patent number: 9229025
    Abstract: In order to provide an inertial sensor capable of suppressing a wrong diagnosis even in an adverse environment such that sudden noise occurs, an inertial sensor is provided with a movable part (105), a first detection unit (C1, C2) for detecting the amount of displacement of the movable part (105), a forced vibration means (503, C3, C4) for forcedly vibrating the movable part (105) by applying a diagnosis signal, a physical quantity calculation unit (502) for calculating the physical quantity from a detection signal from the first detection unit (C1, C2), and an abnormality determination unit (504) for determining the presence or absence of the abnormality for the physical quantity using the diagnosis signal obtained via the first detection unit (C1, C2), and is used within a vehicle, the inertial sensor further comprising a second sensor (510) mounted in the same vehicle and connected to the abnormality determination unit (504).
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: January 5, 2016
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kiyoko Yamanaka, Heewon Jeong, Toshiaki Nakamura, Masahide Hayashi
  • Publication number: 20150355218
    Abstract: An inertial sensor not susceptible to temperature change and vibration disturbance in an implementation environment of the inertial sensor is provided. In the present invention, for example, as illustrated in FIG. 9, an extending portion EXU is provided so as to connect to a fixing portion FU3, this extending portion EXU and a third region P3 which configures part of a mass body MS are connected via a support beam BM3 and a support beam BM4, and the support beam BM3 and the support beam BM4 are disposed oppositely with respect to a virtual line IL1. With this, natural frequency of an unwanted mode due to rotation and torsion of the mass body MS can be shifted to a high frequency band.
    Type: Application
    Filed: November 13, 2013
    Publication date: December 10, 2015
    Inventors: Heewon JEONG, Kiyoko YAMANAKA, Masahide HAYASHI
  • Publication number: 20150301075
    Abstract: A technique of preventing the function stop caused by false operation and false output of an inertial sensor by canceling a signal caused by applying of an acceleration other than a measurement signal before input to an LSI circuit is provided.
    Type: Application
    Filed: October 16, 2012
    Publication date: October 22, 2015
    Inventors: Kiyoko Yamanaka, Heewon Jeong, Masahide Hayashi
  • Publication number: 20150096373
    Abstract: Provided is an angular velocity sensor including a plurality of angular velocity detection units each outputting a different detection result, and including a common driving circuit to drive the angular velocity detection units. The angular velocity detection units of the angular velocity sensor of the present invention are configured to have different driving amplitudes when being driven by a driving signal at the same frequency.
    Type: Application
    Filed: March 19, 2012
    Publication date: April 9, 2015
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Heewon Jeong, Masahide Hayashi, Kiyoko Yamanaka
  • Patent number: 9000543
    Abstract: To provide a combined sensor that can detect a plurality of physical quantities. With the combined sensor, it is possible to realize, while maintaining performance, a reduction in size and a reduction in costs by increasing elements that can be shared among respective sensors. A weight M2 and a detection electrode DTE2 used in an angular-velocity detecting section are also used as a reference capacitive element of a Z-direction-acceleration detecting section configured to detect acceleration in a Z direction. That is, in the Z-direction-acceleration detecting section, a detection capacitive element including the weight M2 and the detection electrode DTE2 configuring the angular-velocity detecting section is used as a reference capacitive element for a detection capacitive element formed by a detection electrode DTE5 and a weight M4.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: April 7, 2015
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Heewon Jeong, Masahide Hayashi, Kiyoko Yamanaka
  • Publication number: 20150040670
    Abstract: In a sensor module capable of changing a detection axis to detect a physical quantity, when a pad is provided at a location other than a corner point of an LSI-side, for the purpose of solving problems such as an increase in a chip surface area and an increase in development costs, caused by guide wiring for connecting the pad, the inertial sensor module is provided with: a first sensor element (100) having a first pad group (120), a second pad group (130) electrically connected to the first pad group and disposed at a location rotated 90 degrees with respect to the first pad group, and a detection axis; and an LSI (202) which controls the first sensor element. In the inertial sensor module, the first sensor element is disposed along a first side of the LSI, a plurality of third pad groups (203) is disposed along a second side intersecting the first side of the LSI, and the third pad group is electrically connected to either the first pad group or the second pad group.
    Type: Application
    Filed: January 25, 2013
    Publication date: February 12, 2015
    Inventors: Kiyoko Yamanaka, Heewon Jeong, Masahide Hayashi
  • Patent number: 8659101
    Abstract: Provided is an inertial sensor device comprising a detection part having an MEMS structure, wherein convenience during sensor installation is ensured while erroneous operation caused by the application of external vibration is controlled. To achieve this objective, an anti-vibration structure (103) is provided in the inertial sensor device, between a semiconductor chip (102) mounted on a package substrate and a semiconductor chip (104) comprising a sensor detection part. The anti-vibration structure (103) has a structure in which the periphery of an anti-vibration part (103a) is surrounded by an anti-vibration part (103b) comprising a material having a larger Young's modulus.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: February 25, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kiyoko Yamanaka, Kengo Suzuki, Kazunori Ohta, Heewon Jeong, Masahide Hayashi
  • Publication number: 20140007685
    Abstract: A movable part rotates about a rotation axis, which passes through a support, when an inertial force in a detecting direction is applied to an inertial sensor. The movable part includes a first region and a second region displaced in a direction opposite to a direction of the first region when the inertial force is applied. A second substrate includes first and second detection electrodes opposed to the first and second regions, respectively. The first detection electrode and the second detection electrode are provided symmetrically with respect to the rotation axis. A cavity is provided symmetrically with respect to the rotation axis. In a direction perpendicular to the detecting direction and a direction in which the rotation axis extends, a length from the rotation axis to an end of the first region and a length from the rotation axis to an end of the second region are different.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 9, 2014
    Inventors: Yuhua ZHANG, Heewon JEONG, Kiyoko YAMANAKA, Masahide HAYASHI
  • Publication number: 20130346015
    Abstract: A semiconductor physical quantity detection sensor includes (1) a first electrostatic capacitance formed by the movable electrode, and a first fixed electrode formed in a first conductive layer shared with the movable electrode, (2) a second electrostatic capacitance that is formed by the movable electrode, and a second fixed electrode formed in a second conductive layer different in a height from a substrate surface from the movable electrode, and (3) an arithmetic circuit that calculates the physical quantity on the basis of a change in the first and second electrostatic capacitances generated when the physical quantity is applied. In this configuration, an electric signal from the first electrostatic capacitance, and an electric signal from the second electrostatic capacitance are input to the arithmetic circuit.
    Type: Application
    Filed: January 18, 2012
    Publication date: December 26, 2013
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Kiyoko Yamanaka, Heewon Jeong, Chisaki Takubo
  • Publication number: 20130285172
    Abstract: To provide a combined sensor that can detect a plurality of physical quantities. With the combined sensor, it is possible to realize, while maintaining performance, a reduction in size and a reduction in costs by increasing elements that can be shared among respective sensors. A weight M2 and a detection electrode DTE2 used in an angular-velocity detecting section are also used as a reference capacitive element of a Z-direction-acceleration detecting section configured to detect acceleration in a Z direction. That is, in the Z-direction-acceleration detecting section, a detection capacitive element including the weight M2 and the detection electrode DTE2 configuring the angular-velocity detecting section is used as a reference capacitive element for a detection capacitive element formed by a detection electrode DTE5 and a weight M4.
    Type: Application
    Filed: November 22, 2011
    Publication date: October 31, 2013
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD
    Inventors: Heewon Jeong, Masahide Hayashi, Kiyoko Yamanaka
  • Publication number: 20130241013
    Abstract: Provided is an inertial sensor device comprising a detection part having an MEMS structure, wherein convenience during sensor installation is ensured while erroneous operation caused by the application of external vibration is controlled. To achieve this objective, an anti-vibration structure (103) is provided in the inertial sensor device, between a semiconductor chip (102) mounted on a package substrate and a semiconductor chip (104) comprising a sensor detection part. The anti-vibration structure (103) has a structure in which the periphery of an anti-vibration part (103a) is surrounded by an anti-vibration part (103b) comprising a material having a larger Young's modulus.
    Type: Application
    Filed: October 7, 2011
    Publication date: September 19, 2013
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Kiyoko Yamanaka, Kengo Suzuki, Kazunori Ohta, Heewon Jeong, Masahide Hayashi
  • Publication number: 20130133422
    Abstract: In order to provide an inertial sensor capable of suppressing a wrong diagnosis even in an adverse environment such that sudden noise occurs, an inertial sensor is provided with a movable part (105), a first detection unit (C1, C2) for detecting the amount of displacement of the movable part (105), a forced vibration means (503, C3, C4) for forcedly vibrating the movable part (105) by applying a diagnosis signal, a physical quantity calculation unit (502) for calculating the physical quantity from a detection signal from the first detection unit (C1, C2), and an abnormality determination unit (504) for determining the presence or absence of the abnormality for the physical quantity using the diagnosis signal obtained via the first detection unit (C1, C2), and is used within a vehicle, the inertial sensor further comprising a second sensor (510) mounted in the same vehicle and connected to the abnormality determination unit (504).
    Type: Application
    Filed: August 8, 2011
    Publication date: May 30, 2013
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Kiyoko Yamanaka, Heewon Jeong, Toshiaki Nakamura, Masahide Hayashi
  • Patent number: 8429969
    Abstract: An inertial sensor capable of making pressure of a space in which an inertial sensor such as an acceleration sensor is placed to be higher than that during a sealing step and improving reliability is provided. The inertial sensor can be achieved by means of making an inertial sensor including a substrate, a movable portion on the substrate, a cap member which seals the movable portion so as to cover the movable portion, wherein a gas-generating material is applied to the movable portion side of the cap.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: April 30, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Kiyoko Yamanaka, Heewon Jeong, Takashi Hattori, Yasushi Goto
  • Patent number: 8427177
    Abstract: A technique in which a false detection and a wrong diagnosis can be suppressed in a capacitance sensor represented by an acceleration sensor is provided. A first capacitative element and a second capacitative element, which configure a capacitance detection unit, and a third capacitative element and a fourth capacitative element, which configure a forced oscillation generation unit, are electrically separated from each other. That is, the diagnosis movable electrode that configures the third capacitative element and the fourth capacitative element is formed integrally with the movable part. On the other hand, the diagnosis fixed electrode and the diagnosis fixed electrode are electrically separated from the detection fixed electrode and the detection fixed electrode.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: April 23, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Heewon Jeong, Kiyoko Yamanaka, Yasushi Goto, Toshiaki Nakamura, Masahide Hayashi