Patents by Inventor Klaus-Gunter Oppermann

Klaus-Gunter Oppermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7692317
    Abstract: Apparatus for housing a micromechanical structure, and a method for producing the housing. The apparatus has a substrate having a main side on which the micromechanical structure is formed, a photo-resist material structure surrounding the micromechanical structure to form a cavity together with the substrate between the substrate and the photo-resist material structure, wherein the cavity separates the micromechanical structure and the photo-resist material structure and has an opening, and a closure for closing the opening to close the cavity.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: April 6, 2010
    Assignee: Infineon Technologies AG
    Inventors: Martin Franosch, Andreas Meckes, Winfried Nessler, Klaus-Gunter Oppermann
  • Publication number: 20080017974
    Abstract: Apparatus for housing a micromechanical structure, and a method for producing the housing. The apparatus has a substrate having a main side on which the micromechanical structure is formed, a photo-resist material structure surrounding the micromechanical structure to form a cavity together with the substrate between the substrate and the photo-resist material structure, wherein the cavity separates the micromechanical structure and the photo-resist material structure and has an opening, and a closure for closing the opening to close the cavity.
    Type: Application
    Filed: September 28, 2007
    Publication date: January 24, 2008
    Applicant: Infineon Technologies AG
    Inventors: MARTIN FRANOSCH, Andreas Meckes, Winfried Nessler, Klaus-Gunter Oppermann
  • Patent number: 7300823
    Abstract: Apparatus for housing a micromechanical structure, and a method for producing the housing. The apparatus has a substrate having a main side on which the micromechanical structure is formed, a photo-resist material structure surrounding the micromechanical structure to form a cavity together with the substrate between the substrate and the photo-resist material structure, wherein the cavity separates the micromechanical structure and the photo-resist material structure and has an opening, and a closure for closing the opening to close the cavity.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: November 27, 2007
    Assignee: Infineon Technologies AG
    Inventors: Martin Franosch, Andreas Meckes, Winfried Nessler, Klaus-Gunter Oppermann
  • Patent number: 7234237
    Abstract: In a method for producing a protective cover for a device formed in a substrate, at first a sacrificial structure is produced on the substrate, wherein the sacrificial structure comprises a first portion covering a first area of the substrate including the device and a second portion extending from the first portion into a second area of the substrate including no device. Then a first cover layer is deposited that encloses the sacrificial structure such that the second portion of the sacrificial structure is at least partially exposed. Then the sacrificial structure is removed, and the structure formed by the removal of the sacrificial structure is closed.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: June 26, 2007
    Assignee: Infineon Technologies AG
    Inventors: Martin Franosch, Andreas Meckes, Klaus-Günter Oppermann
  • Patent number: 6955950
    Abstract: In a method for generating a protective cover for a device, where a substrate is provided, which comprises the device, first, a sacrificial pattern is generated on the substrate. The sacrificial pattern covers at least an area of the substrate, which comprises the device. Then, a polymer layer is deposited, which comprises at least on sacrificial pattern. Then, an opening will be formed in the polymer layer to expose a portion of the sacrificial pattern. Then, the sacrificial pattern will be removed and the formed opening in the polymer layer is closed.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: October 18, 2005
    Assignee: Infineon Technologies AG
    Inventors: Robert Aigner, Martin Franosch, Andreas Meckes, Klaus-Günter Oppermann, Marc Strasser
  • Patent number: 6939734
    Abstract: In a method for producing a protective cover for a device which is formed in a substrate, a first cover layer is initially deposited on the substrate, the first cover layer covering an area of the substrate which includes the device. Subsequently, an opening is formed in the first cover layer, the opening exposing that area of the substrate which includes the device. Then the opening formed in the first cover layer is filled up using a filling material. Subsequently, a second cover layer is deposited on the first cover layer and in the opening of the first cover layer which is filled up with the filling material. Thereafter, an opening is formed in the second cover layer to expose an area of the filling material. Finally, the filling material covering that area of the substrate which includes the device is removed, and the opening formed in the second cover layer is closed.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: September 6, 2005
    Assignee: Infineon Technologies AG
    Inventors: Martin Franosch, Andreas Meckes, Klaus-Günter Oppermann
  • Publication number: 20050148205
    Abstract: In a method for producing a protective cover for a device formed in a substrate, at first a sacrificial structure is produced on the substrate, wherein the sacrificial structure comprises a first portion covering a first area of the substrate including the device and a second portion extending from the first portion into a second area of the substrate including no device. Then a first cover layer is deposited that encloses the sacrificial structure such that the second portion of the sacrificial structure is at least partially exposed. Then the sacrificial structure is removed, and the structure formed by the removal of the sacrificial structure is closed.
    Type: Application
    Filed: April 9, 2004
    Publication date: July 7, 2005
    Applicant: Infineon Technologies AG
    Inventors: Martin Franosch, Andreas Meckes, Klaus-Gunter Oppermann
  • Publication number: 20050146022
    Abstract: Apparatus for housing a micromechanical structure, and a method for producing the housing. The apparatus has a substrate having a main side on which the micromechanical structure is formed, a photo-resist material structure surrounding the micromechanical structure to form a cavity together with the substrate between the substrate and the photo-resist material structure, wherein the cavity separates the micromechanical structure and the photo-resist material structure and has an opening, and a closure for closing the opening to close the cavity.
    Type: Application
    Filed: November 17, 2004
    Publication date: July 7, 2005
    Applicant: Infineon Technologies AG
    Inventors: Martin Franosch, Andreas Meckes, Winfried Nessler, Klaus-Gunter Oppermann
  • Publication number: 20050048757
    Abstract: In a method for generating a protective cover for a device, where a substrate is provided, which comprises the device, first, a sacrificial pattern is generated on the substrate. The sacrificial pattern covers at least an area of the substrate, which comprises the device. Then, a polymer layer is deposited, which comprises at least on sacrificial pattern. Then, an opening will be formed in the polymer layer to expose a portion of the sacrificial pattern. Then, the sacrificial pattern will be removed and the formed opening in the polymer layer is closed.
    Type: Application
    Filed: July 9, 2004
    Publication date: March 3, 2005
    Applicant: Infineon Technologies AG
    Inventors: Robert Aigner, Martin Franosch, Andreas Meckes, Klaus-Gunter Oppermann, Marc Strasser
  • Publication number: 20050009316
    Abstract: In a method for producing a protective cover for a device which is formed in a substrate, a first cover layer is initially deposited on the substrate, the first cover layer covering an area of the substrate which includes the device. Subsequently, an opening is formed in the first cover layer, the opening exposing that area of the substrate which includes the device. Then the opening formed in the first cover layer is filled up using a filling material. Subsequently, a second cover layer is deposited on the first cover layer and in the opening of the first cover layer which is filled up with the filling material. Thereafter, an opening is formed in the second cover layer to expose an area of the filling material. Finally, the filling material covering that area of the substrate which includes the device is removed, and the opening formed in the second cover layer is closed.
    Type: Application
    Filed: April 8, 2004
    Publication date: January 13, 2005
    Applicant: Infineon Technologies AG
    Inventors: Martin Franosch, Andreas Meckes, Klaus-Gunter Oppermann
  • Patent number: 6762455
    Abstract: A semiconductor component includes a semiconductor body of a first conductivity type which accommodates a space charge region. Semiconductor regions of a second conductivity type are disposed in at least one plane extending essentially perpendicularly to a connecting line extending between two electrodes. A cell array is disposed under one of the electrodes in the semiconductor body. At least some of the semiconductor regions of the second conductivity type are connected to the cell array via filiform semiconductor zones of the second conductivity type in order to expedite switching processes. A method for fabricating such a semiconductor component is also provided.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: July 13, 2004
    Assignee: Infineon Technologies AG
    Inventors: Klaus-Günter Oppermann, Jenö Tihanyi
  • Patent number: 6724058
    Abstract: A recess is produced in a material layer by creating at least a first and a second structure in various steps. The layers define each other laterally and extend to the bottom of the recess. The first structure and the second structure are so narrow that they can be made by creating conformally produced layers that have an independent thickness and are smaller than the depth of the recess. The conformally produced layers are formed in an appropriate deposition process. A covering structure can be produced on top of the first and second structure. An opening can be made in the covering structure, through which the first structure and the second structure can be removed in an etching step.
    Type: Grant
    Filed: January 8, 2001
    Date of Patent: April 20, 2004
    Assignee: Infineon Technologies AG
    Inventors: Robert Aigner, Klaus-Günter Oppermann
  • Patent number: 6556418
    Abstract: A micromechanical component placed on a substrate face includes at least one cell. A counter-electrode of a cell capacitor is placed under a cavity. The counter-electrode can be made from a first part of a lower conductive layer. An optionally circular membrane used as an electrode of the capacitor is placed above the cavity. The membrane is homogeneous, has a substantially uniform thickness, and can be part of an upper conductive layer preferably supported by a second part of the lower conductive layer. A caustic channel used to remove the sacrificial coating in order to form the cavity is laterally connected thereto. The channel has a vertical dimension equal to the vertical dimension of the cavity. A closure is adjacent to the channel and disposed outside the membrane. The component can be used as a pressure sensor, and can have several cells each adjacent to six other cells. A process for fabricating a micromechanical component is also provided.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: April 29, 2003
    Assignee: Infineon Technologies AG
    Inventors: Robert Aigner, Hergen Kapels, Klaus-Günter Oppermann
  • Publication number: 20020117715
    Abstract: A semiconductor component includes a semiconductor body of a first conductivity type which accommodates a space charge region. Semiconductor regions of a second conductivity type are disposed in at least one plane extending essentially perpendicularly to a connecting line extending between two electrodes. A cell array is disposed under one of the electrodes in the semiconductor body. At least some of the semiconductor regions of the second conductivity type are connected to the cell array via filiform semiconductor zones of the second conductivity type in order to expedite switching processes. A method for fabricating such a semiconductor component is also provided.
    Type: Application
    Filed: March 11, 2002
    Publication date: August 29, 2002
    Inventors: Klaus-Gunter Oppermann, Jeno Tihanyi
  • Patent number: 6406933
    Abstract: Etching openings are provided in a membrane above an etched-out cavity, only at a distance of at most one tenth of the diameter of the member away from the edge of the cavity. For production, a poly layer is applied to a sacrificial layer composed of SiO2 and is provided with rows of etching holes, through which channels are etched out in the sacrificial layer. The poly layer is oxidized and is made smooth by means of a planarization layer. Etching holes are produced in the edge region of the membrane layer. The sacrificial layer is removed over the entire area of the cavity which is to be produced, with the etching medium propagating sufficiently quickly through the channels.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: June 18, 2002
    Assignee: Infineon Technologies AG
    Inventors: Robert Aigner, Klaus-Günter Oppermann, Hergen Kapels
  • Patent number: 6401544
    Abstract: A method is disclosed for producing a micromechanical component. The micromechanical component has sensor holes, wherein at least one component protective layer and/or a spacer coating is applied on the component before separating the wafer into chips. The component protective layer sealingly covers at least the walls of the holes extending parallel to the surface of the wafer and perpendicular to the surface of the wafer and the spacer coating sealingly covers at least the walls of the holes extending parallel to the surface of the wafer.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: June 11, 2002
    Assignee: Infineon Technologies AG
    Inventors: Robert Aigner, Christofer Hierold, Hergen Kapels, Stefan Kolb, Dieter Maier-Schneider, Klaus-Günter Oppermann, Hans-Jörg Timme, Thomas Scheiter, Wolfgang Werner
  • Patent number: 6373115
    Abstract: A micromechanical structure, such as a sensor, includes a substrate, a diaphragm, a cavity, a sacrificial layer and a terminating structure. The terminating structure is cut away in the region of the diaphragm in such a way that a media opening is located above the diaphragm. The diameter of the cavity is smaller over the entire circumference of the cavity than the diameter of the opening. A method for manufacturing the micromechanical structure is also provided.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: April 16, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stefan Kolb, Dieter Maier-Schneider, Klaus-Günter Oppermann, Hans-Jörg Timme
  • Patent number: 6346429
    Abstract: An integrated sensor is fabricated by etching recesses or depressions into the top side of a semiconductor body and by fabricating sensor components in the recesses or depressions. The sensor components are lowered in the recesses or depressions by approximately half of their height. Electronic components are fabricated in the remaining regions of the top side of the semiconductor body. The remaining regions may be covered with a protective layer if the recesses or depressions are fabricated after the electronic components.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: February 12, 2002
    Assignee: Infineon Technologies AG
    Inventors: Robert Aigner, Hergen Kapels, Andreas Meckes, Klaus-Günter Oppermann
  • Publication number: 20010054315
    Abstract: A method is disclosed for producing a micromechanical component. The micromechanical component has sensor holes, wherein at least one component protective layer and/or a spacer coating is applied on the component before separating the wafer into chips. The component protective layer sealingly covers at least the walls of the holes extending parallel to the surface of the wafer and perpendicular to the surface of the wafer and the spacer coating sealingly covers at least the walls of the holes extending parallel to the surface of the wafer.
    Type: Application
    Filed: February 27, 2001
    Publication date: December 27, 2001
    Inventors: Robert Aigner, Christofer Hierold, Hergen Kapels, Stefan Kolb, Dieter Maier-Schneider, Klaus-Gunter Oppermann, Hans-Jorg Timme, Thomas Scheiter, Wolfgang Werner
  • Publication number: 20010048139
    Abstract: A micromechanical sensor is described which contains electrodes that are disposed on a substrate, and electrode bars made of silicon that can move with regard to the electrodes. A deformation of the substrate is measured by determining differential changes in a capacity of the electrode bars in comparison to adjacently disposed electrodes. Two groups of electrode bars are preferably used which are interlocked with one another in an alternating comb-like manner, which, are separate from one another, and are interconnected at the ends thereof in an electrically conductive manner, and which are anchored on the substrate.
    Type: Application
    Filed: May 4, 2001
    Publication date: December 6, 2001
    Inventors: Robert Aigner, Christofer Hierold, Manfred Glehr, Klaus-Gunter Oppermann