Patents by Inventor Klaus Nyfors

Klaus Nyfors has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10787528
    Abstract: The present invention relates to an olefin polymerization process for producing propylene copolymer composition (P), wherein propylene, C4 to C10 ?-olefin and optionally ethylene are reacted in the presence of a Ziegler-Natta catalyst in a multistage polymerization process comprising at least two polymerization reactors, wherein the copolymer composition is bimodal with respect to the content of C4 to C10 ?-olefin and, if present, to ethylene. Further, the invention is directed to the propylene copolymer composition being bimodal with respect to the content of C4 to C10 ?-olefin and optionally to ethylene, and use of said propylene copolymer compositions for producing articles.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: September 29, 2020
    Assignee: Borealis AG
    Inventors: Kristin Reichelt, Kauno Alastalo, Klaus Nyfors, Luigi Resconi
  • Patent number: 10702842
    Abstract: The present invention deals with a process of polymerising at least one olefin in a fluidised bed in a fluidised bed polymerisation reactor comprising a top zone, a middle zone in direct contact and below, a bottom zone in direct contact with and below the middle zone and wherein the reactor does not comprise a fluidisation grid. The process comprises passing a stream comprising the fluidisation gas and polymer particles into a separation step and withdrawing a stream comprising the polymer particles from the separation step and returning it to the polymerisation reactor. The process comprises adding a support gas stream to the stream comprising the polymer particles downstream of the separation step.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: July 7, 2020
    Assignee: BOREALIS AG
    Inventors: Vasileios Kanellopoulos, Klaus Nyfors, Gunter Weickert, Eric-Jan Prinsen
  • Publication number: 20200123279
    Abstract: A method and arrangement of producing polymer comprising polymerizing in reactor having a top zone having a generally conical shape, a middle zone in direct contact with and below said top zone having a generally cylindrical shape, a bottom zone having a generally conical shape thereby polymerizing at least one olefin, in the presence of a polymerization catalyst and fluidization gas to obtain (i) a first stream comprising fluidization gas and particles of olefin polymer, (ii) a second stream comprising fluidization gas and agglomerates of olefin polymer, (iii) a third olefin polymer product stream—directing the first stream comprising fluidization gas and olefin polymer particles to a series of at least three cyclones connected to the fluidized bed reactor—separating agglomerates of olefin polymer from the second stream, withdrawing from the fluidized bed polymerization reactor the third olefin polymer product stream.
    Type: Application
    Filed: June 15, 2018
    Publication date: April 23, 2020
    Inventors: Vasileios Kanellopoulos, Apostolos Krallis, Klaus Nyfors, Erno Elovainio
  • Publication number: 20190351346
    Abstract: The present invention provides a process for recovering transition metal tetrahalides from a waste stream coming from a catalyst manufacturing process by (a) establishing a mixed stream comprising transition metal tetrahalide and transition metal alkoxyhalides; (b) forming a falling liquid film from the mixed stream of step (a) at a temperature of from 25 to 85° C. and an absolute pressure of from 0.05 to 0.6 bar; and (c) establishing from the film of step (b) a first vapour stream containing from 90 to 100% of recoverable components and a second liquid stream containing about 10 to 80% of titanium haloalkoxides.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Mikko Lylykangas, Jukka Räsänen, Klaus Nyfors, Pekka Malinen
  • Patent number: 10450391
    Abstract: The present invention deals with an olefin polymerisation process. At least one olefin is polymerised in gas phase in a fluidised bed in the presence of an olefin polymerisation catalyst in a polymerisation reactor having a vertical body; a generally conical downwards tapering bottom zone; a generally cylindrical middle zone above and connected to said bottom zone; and a generally conical upwards tapering top zone above and connected to said middle zone. Fluidisation gas is introduced to the bottom zone of the reactor from where it passes upwards through the reactor, and withdrawn from the top zone of the reactor. The gas is then compressed, cooled and returned into the bottom zone of the reactor. A fluidised bed is thus formed within the reactor where the growing polymer particles are suspended in the upwards rising gas stream wherein the superficial velocity of the fluidisation gas is less than the transport velocity of the particles. There is no fluidisation grid in the reactor.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: October 22, 2019
    Assignee: Borealis AG
    Inventors: Vasileios Kanellopoulos, Klaus Nyfors, Pablo Ivan Aguayo Arellano, Gunter Weickert, Eric-Jan Prinsen
  • Patent number: 10369491
    Abstract: The present invention provides a process for recovering transition metal tetrahalides from a waste stream coming from a catalyst manufacturing process by (a) establishing a mixed stream comprising transition metal tetrahalide and transition metal alkoxyhalides; (b) forming a falling liquid film from the mixed stream of step (a) at a temperature of from 25 to 85° C. and an absolute pressure of from 0.05 to 0.6 bar; and (c) establishing from the film of step (b) a first vapor stream containing from 90 to 100% of recoverable components and a second liquid stream containing about 10 to 80% of titanium haloalkoxides.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: August 6, 2019
    Assignee: Borealis AG
    Inventors: Mikko Lylykangas, Jukka Räsänen, Klaus Nyfors, Pekka Malinen
  • Publication number: 20190010263
    Abstract: The present invention relates to an olefin polymerization process for producing propylene copolymer composition (P), wherein propylene, C4 to C10 ?-olefin and optionally ethylene are reacted in the presence of a Ziegler-Natta catalyst in a multistage polymerization process comprising at least two polymerization reactors, wherein the copolymer composition is bimodal with respect to the content of C4 to C10 ?-olefin and, if present, to ethylene. Further, the invention is directed to the propylene copolymer composition being bimodal with respect to the content of C4 to C10 ?-olefin and optionally to ethylene, and use of said propylene copolymer compositions for producing articles.
    Type: Application
    Filed: December 27, 2016
    Publication date: January 10, 2019
    Applicant: Borealis AG
    Inventors: Kristin REICHELT, Kauno ALASTALO, Klaus NYFORS, Luigi RESCONI
  • Publication number: 20180369775
    Abstract: The present invention deals with a process of polymerising at least one olefin in a fluidised bed in a fluidised bed polymerisation reactor comprising a top zone, a middle zone in direct contact and below, a bottom zone in direct contact with and below the middle zone and wherein the reactor does not comprise a fluidisation grid. The process comprises passing a stream comprising the fluidisation gas and polymer particles into a separation step and withdrawing a stream comprising the polymer particles from the separation step and returning it to the polymerisation reactor. The process comprises adding a support gas stream to the stream comprising the polymer particles downstream of the separation step.
    Type: Application
    Filed: December 21, 2016
    Publication date: December 27, 2018
    Inventors: Vasileios Kanellopoulos, Klaus Nyfors, Gunter Weickert, Eric-Jan Prinsen
  • Publication number: 20180155465
    Abstract: The present invention deals with an olefin polymerisation process. At least one olefin is polymerised in gas phase in a fluidised bed in the presence of an olefin polymerisation catalyst in a polymerisation reactor having a vertical body; a generally conical downwards tapering bottom zone; a generally cylindrical middle zone above and connected to said bottom zone; and a generally conical upwards tapering top zone above and connected to said middle zone. Fluidisation gas is introduced to the bottom zone of the reactor from where it passes upwards through the reactor, and withdrawn from the top zone of the reactor. The gas is then compressed, cooled and returned into the bottom zone of the reactor. A fluidised bed is thus formed within the reactor where the growing polymer particles are suspended in the upwards rising gas stream wherein the superficial velocity of the fluidisation gas is less than the transport velocity of the particles. There is no fluidisation grid in the reactor.
    Type: Application
    Filed: June 10, 2016
    Publication date: June 7, 2018
    Inventors: Vasileios KANELLOPOULOS, Klaus NYFORS, Pablo Ivan AGUAYO ARELLANO, Gunter WEICKERT, Eric-Jan PRINSEN
  • Patent number: 9475896
    Abstract: Method for preparing olefin polymer in a loop reactor, said loop reactor comprises a first outlet for withdrawing polymer slurry from the loop reactor, and a second outlet for withdrawing a polymer slurry from the loop reactor, wherein the first outlet is located such that polymer slurry is withdrawn having a concentration of polymer which is equal or higher than the average concentration of polymer in the loop reactor, and the second outlet is located such that polymer slurry is withdrawn having a concentration of polymer which is lower than the average concentration of polymer in the loop reactor, the method comprises the steps of supplying olefin monomers and a catalytic system to the loop reactor to form a polymer slurry in the loop reactor, and controlling the total amount of polymer and/or the total amount of polymer slurry withdrawn from the loop reactor by adjusting the ratio of polymer slurry withdrawn through the first outlet and polymer slurry withdrawn through the second outlet.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: October 25, 2016
    Assignee: Borealis AG
    Inventors: Pauli Leskinen, Sameli Hakola, Kauno Alastalo, Klaus Nyfors
  • Patent number: 9260547
    Abstract: A process including polymerizing ethylene in the presence of a polymerization catalyst and hydrogen in a first polymerization reactor to produce a first slurry; withdrawing a first stream of the slurry from the first polymerization reactor; directing the slurry stream into a second polymerization reactor; polymerizing ethylene in the presence of the first ethylene polymer, the polymerization catalyst, and hydrogen in a second polymerization reactor to produce a second slurry; withdrawing from the second polymerization reactor a second slurry stream having a solids concentration higher than the average solids concentration of the second slurry within the second polymerization reactor; withdrawing from the second polymerization reactor a third slurry stream having a solids concentration lower than the average solids concentration of the second slurry within the second polymerization reactor; and directing at least a part of the second slurry stream into one of the first and second polymerization reactors.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: February 16, 2016
    Assignee: BOREALIS AG
    Inventors: Ilke Senol, Erik Eriksson, Kauno Alastalo, Pauli Leskinen, Klaus Nyfors
  • Patent number: 9216548
    Abstract: The invention is directed to a process for the treatment of plastic material comprising a) providing a liquid; b) contacting the plastic material with the liquid; c) keeping the plastic material in the liquid at Tb?25° C. to Tb of the liquid, wherein Tb is the boiling point of the liquid at the applied pressure; and d) removing the plastic material from the liquid. Furthermore, the invention is directed to the use of a liquid for the treatment of plastic material and to a plant for treating plastic material with a liquid.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: December 22, 2015
    Assignee: BOREALIS TECHNOLOGY OY
    Inventors: Esa Korhonen, Ensio Hietanen, Karin H. Knudsen, Kai Hagane, Fred Bergmann, Klaus Nyfors
  • Patent number: 9192903
    Abstract: Reactor assembly for the production of polymers including a fluidized bed reactor (1) comprising a bottom zone (5), a middle zone (6) and an upper zone (7), an inlet (8) for the fluidization gas located in the bottom zone (5), an outlet (9) for the fluidization gas located in the upper zone (7); the outlet (9) for the fluidization gas being coupled with the fluidized bed reactor (1) via inlet (8) via a gas circulation line; means for separation of solids from gas (2) being connected to said gas circulation line; the equivalent cross-sectional diameter of the upper zone (7) being monotonically decreasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the middle zone (6) having an essentially constant equivalent cross-sectional diameter with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the equivalent cross-sectional diameter of the bottom zone (5) being monotonically increasing with respect to the flow direction of the fl
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 24, 2015
    Assignee: BOREALIS AG
    Inventors: Günter Weickert, Erik Eriksson, Michiel Bergstra, Klaus Nyfors
  • Patent number: 9192905
    Abstract: The invention relates to a reactor assembly for the production of polymers including a fluidized bed reactor (1) comprising a bottom zone (5), a middle zone (6) and an upper zone (7), an inlet (8) for the fluidization gas located in the bottom zone (5), an outlet (9) for the fluidization gas located in the upper zone (7); the outlet (9) for the fluidization gas being coupled with the fluidized bed reactor (1) via inlet (8); the equivalent cross-sectional diameter of the bottom zone (5) being monotonically increasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the middle zone (6) having an essentially constant equivalent cross-sectional diameter with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the equivalent cross-sectional diameter of the upper zone (7) being monotonically decreasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; wherein that the ratio of the height of
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 24, 2015
    Assignee: BOREALIS AG
    Inventors: Erik Eriksson, Michiel Bergstra, Klaus Nyfors, Günter Weickert
  • Publication number: 20150259446
    Abstract: A process including polymerizing ethylene in the presence of a polymerization catalyst and hydrogen in a first polymerization reactor to produce a first slurry; withdrawing a first stream of the slurry from the first polymerization reactor; directing the slurry stream into a second polymerization reactor; polymerizing ethylene in the presence of the first ethylene polymer, the polymerization catalyst, and hydrogen in a second polymerization reactor to produce a second slurry; withdrawing from the second polymerization reactor a second slurry stream having a solids concentration higher than the average solids concentration of the second slurry within the second polymerization reactor; withdrawing from the second polymerization reactor a third slurry stream having a solids concentration lower than the average solids concentration of the second slurry within the second polymerization reactor; and directing at least a part of the second slurry stream into one of the first and second polymerization reactors.
    Type: Application
    Filed: May 27, 2015
    Publication date: September 17, 2015
    Inventors: Ilke SENOL, Erik ERIKSSON, Kauno ALASTALO, Pauli LESKINEN, Klaus NYFORS
  • Publication number: 20140378629
    Abstract: Method for preparing olefin polymer in a loop reactor, said loop reactor comprises a first outlet for withdrawing polymer slurry from the loop reactor, and a second outlet for withdrawing a polymer slurry from the loop reactor, wherein the first outlet is located such that polymer slurry is withdrawn having a concentration of polymer which is equal or higher than the average concentration of polymer in the loop reactor, and the second outlet is located such that polymer slurry is withdrawn having a concentration of polymer which is lower than the average concentration of polymer in the loop reactor, the method comprises the steps of supplying olefin monomers and a catalytic system to the loop reactor to form a polymer slurry in the loop reactor, and controlling the total amount of polymer and/or the total amount of polymer slurry withdrawn from the loop reactor by adjusting the ratio of polymer slurry withdrawn through the first outlet and polymer slurry withdrawn through the second outlet.
    Type: Application
    Filed: December 12, 2012
    Publication date: December 25, 2014
    Inventors: Pauli Leskinen, Sameli Hakola, Kauno Alastalo, Klaus Nyfors
  • Patent number: 8916660
    Abstract: Process and apparatus for recovering polymer from a gas phase reactor having a distribution plate via an outlet vessel comprising at least one apparatus for the breakup of polymeric agglomerates, the apparatus further comprising a feed pipe connecting the gas phase reactor and the outlet vessel a return gas line connecting the gas phase reactor and the outlet vessel, means for varying the flow rate through the return gas line from the outlet vessel to the gas phase reactor, and means for varying the outlet rate of polymer product from the outlet vessel.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: December 23, 2014
    Assignee: Borealis AG
    Inventors: Klaus Nyfors, Jari Aarila, Jari Hatonen, Henrik Andtsjo, Eira Johansson, Mikko Lylykangas
  • Publication number: 20140171611
    Abstract: Process and apparatus for recovering polymer from a a gas phase reactor having a distribution plate via an outlet vessel comprising at least one apparatus for the breakup of polymeric agglomerates, the apparatus further comprising a feed pipe connecting the gas phase reactor and the outlet vessel a return gas line connecting the gas phase reactor and the outlet vessel, means for varying the flow rate through the return gas line from the outlet vessel to the gas phase reactor, and means for varying the outlet rate of polymer product from the outlet vessel.
    Type: Application
    Filed: November 16, 2012
    Publication date: June 19, 2014
    Applicant: BOREALIS AG
    Inventors: Klaus Nyfors, Jari Aarila, Jari Hatonen, Henrik Andtsjo, Eira Johansson, Mikko Lylykangas
  • Publication number: 20140080991
    Abstract: The invention relates to a reactor assembly for the production of polymers including a fluidized bed reactor (1) comprising a bottom zone (5), a middle zone (6) and an upper zone (7), an inlet (8) for the fluidization gas located in the bottom zone (5), an outlet (9) for the fluidization gas located in the upper zone (7); the outlet (9) for the fluidization gas being coupled with the fluidized bed reactor (1) via inlet (8); the equivalent cross-sectional diameter of the bottom zone (5) being monotonically increasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the middle zone (6) having an essentially constant equivalent cross-sectional diameter with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the equivalent cross-sectional diameter of the upper zone (7) being monotonically decreasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; wherein that the ratio of the height of
    Type: Application
    Filed: March 2, 2012
    Publication date: March 20, 2014
    Applicant: BOREALIS AG
    Inventors: Erik Eriksson, Michiel Bergstra, Klaus Nyfors, Günter Weickert
  • Publication number: 20140058051
    Abstract: Reactor assembly for the production of polymers including a fluidized bed reactor (1) comprising a bottom zone (5), a middle zone (6) and an upper zone (7), an inlet (8) for the fluidization gas located in the bottom zone (5), an outlet (9) for the fluidization gas located in the upper zone (7); the outlet (9) for the fluidization gas being coupled with the fluidized bed reactor (1) via inlet (8) via a gas circulation line; means for separation of solids from gas (2) being connected to said gas circulation line; the equivalent cross-sectional diameter of the upper zone (7) being monotonically decreasing with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the middle zone (6) having an essentially constant equivalent cross-sectional diameter with respect to the flow direction of the fluidization gas through the fluidized bed reactor; the equivalent cross-sectional diameter of the bottom zone (5) being monotonically increasing with respect to the flow direction of the fl
    Type: Application
    Filed: March 2, 2012
    Publication date: February 27, 2014
    Applicant: BOREALIS AG
    Inventors: Günter Weickert, Erik Eriksson, Michiel Bergstra, Klaus Nyfors