Patents by Inventor Kohei Hasegawa

Kohei Hasegawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040177905
    Abstract: The present invention provides a method for manufacturing an ultra high strength cold-rolled steel sheet, comprising the step of continuously annealing a cold-rolled steel sheet consisting essentially of, in terms of weight percentages, 0.07 to 0.15% C, 0.7 to 2% Si, 1.8 to 3% Mn, 0.02% or less P, 0.01% or less S, 0.01 to 0.1% Sol. Al, 0.005% or less N, 0.0003 to 0.003% B, and the balance being Fe, in which such continuous annealing comprises the steps of: heating the cold-rolled steel sheet at from 800° C. to 870° C. for 10 seconds or more; slowly cooling the heated steel sheet down to from 650° C. to 750° C.; rapidly cooling the slowly cooled steel sheet down to 100° C. or less at a cooling speed of over 500° C./sec; reheating the rapidly cooled steel sheet at from 325° C. to 425° C. for from 5 minutes to minutes; cooling the reheated steel sheet down to room temperature; and coiling the cooled steel sheet.
    Type: Application
    Filed: March 29, 2004
    Publication date: September 16, 2004
    Inventors: Kohei Hasegawa, Nobuyuki Nakamura, Toshiaki Urabe
  • Patent number: 6695933
    Abstract: An ultra-high strength cold rolled steel sheet having a tensile strength of 880 to 1170 MPa, that consists essentially of 0.01 to 0.07% C, 0.3% or less Si, 0.1% or less P, 0.01% or less S, 0.01 to 0.1% sol.Al, 0.0050% or less N, 1.6 to 2.5% of the sum of at least one element selected from the group consisting of Mn, Cr, and Mo, by mass, and a balance of Fe, and that has an inner zone deeper than 10 &mgr;m from the surface of the steel sheet being substantially a martensitic single phase structure. Since the steel sheet has a hole expansion ratio of 75% or more, specified by the Standard of Japan Iron and Steel Federation, JFST1001-1996, the steel sheet has a tensile strength in a range of from 880 to 1170 MPa, and an excellent mechanically joining property, and is suitable for fabricating automobile seat frames.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: February 24, 2004
    Assignee: NKK Corporation
    Inventors: Kohei Hasegawa, Toshiaki Urabe, Akihide Yoshitake, Hideyuki Tsurumaru
  • Patent number: 6689229
    Abstract: A high strength cold rolled steel sheet consists essentially of 0.0040 to 0.01% C, not more than 0.05% Si, 0.1 to 1.0% Mn, 0.01 to 0.05% P, not more than 0.02% S, 0.01 to 0.1% sol.Al, not more than 0.004% N, 0.01 to 0.14% Nb, by weight, and a balance of substantially Fe and inevitable impurities, and having an n value of not less than 0.21 calculated from two points (1% and 10%) of nominal strain determined by the uniaxial tensile test, and a method for manufacturing the cold rolled steel sheet. The high strength cold rolled steel sheet has excellent combined formability, resistance to embrittlement during secondary operation, formability at welded portions, and anti-burring performance, and has a desirable surface appearance and uniformity of material in a coil, and thus can be desirably used for automobile exterior panels.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: February 10, 2004
    Assignee: NKK Corporation
    Inventors: Takeshi Fujita, Fusato Kitano, Yoshihiro Hosoya, Toru Inazumi, Yuji Yamasaki, Masaya Morita, Yasunobu Nagataki, Kohei Hasegawa, Hiroshi Matsuda, Moriaki Ono
  • Publication number: 20040020570
    Abstract: A high strength cold rolled steel sheet consists essentially of 0.0040 to 0.01% C, 0.05% or less Si, 0.1 to 1.0% Mn, 0.01 to 0.05% P, 0.02% or less S, 0.01 to 0.1% sol.Al, 0.004% or less N, 0.01 to 0.14% Nb, optionally 0.05% or less Ti, optionally 0.
    Type: Application
    Filed: July 29, 2003
    Publication date: February 5, 2004
    Applicant: NKK CORPORATION
    Inventors: Takeshi Fujita, Fusato Kitano, Yoshihiro Hosoya, Toru Inazumi, Yuji Yamasaki, Masaya Morita, Yasunobu Nagataki, Kohei Hasegawa, Hiroshi Matsuda, Moriaki Ono
  • Publication number: 20030005986
    Abstract: The present invention relates to an ultra-high strength cold rolled steel sheet having 880 to 1170 MPa of tensile strength, that consists essentially of 0.01 to 0.07% C, 0.3% or less Si, 0.1% or less P, 0.01% or less S, 0.01 to 0.1% sol.Al, 0.0050% or less N. 1.6 to 2.5% of sum of at least one element selected from the group consisting of Mn, Cr, and Mo, by mass, and balance of Fe, and that has an inner zone deeper than 10 &mgr;m from the surface of the steel sheet being substantially martensitic single phase structure. Since the steel sheet has hole expansion ratio of 75% or more, specified by the Standard of Japan Iron and Steel Federation, JFST1001-1996, tensile strength in a range of from 880 to 1170 MPa, and excellent mechanically joining property, it is suitable for automobile seat frames.
    Type: Application
    Filed: March 28, 2002
    Publication date: January 9, 2003
    Inventors: Kohei Hasegawa, Toshiaki Urabe, Akihide Yoshitake, Hideyuki Tsurumaru
  • Patent number: 6494969
    Abstract: The present invention relates to a very low C—Nb cold rolled steel sheet giving 340 to 440 MPa of tensile strength. For example, the cold rolled steel sheet consists essentially of 0.0040 to 0.01% C, not more than 0.05% Si, 0.1 to 1.0% Mn, 0.01 to 0.05% P, not more than 0.02% S, 0.01 to 0.1% sol.Al, not more than 0.004% N, 0.01 to 0.14% Nb, by weight, and balance of substantially Fe and inevitable impurities, and has not less than 0.21 of n value calculated from two points (1% and 10%) of nominal strain determined by the uniaxial tensile test, and relates to a method for manufacturing the cold rolled steel sheet. The present invention provides a high strength cold rolled steel sheet for automobile exterior panels having excellent combined formability, resistance to embrittlement during secondary operation, formability at welded portions, anti-burring performance, good surface appearance, and uniformity of material in a coil.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: December 17, 2002
    Assignee: NKK Corporation
    Inventors: Takeshi Fujita, Fusato Kitano, Yoshihiro Hosoya, Toru Inazumi, Yuji Yamasaki, Masaya Morita, Yasunobu Nagataki, Kohei Hasegawa, Hiroshi Matsuda, Moriaki Ono
  • Publication number: 20020179206
    Abstract: The present invention relates to a very low C-Nb cold rolled steel sheet giving 340 to 440 MPa of tensile strength. For example, the cold rolled steel sheet consists essentially of 0.0040 to 0.01% C, not more than 0.05% Si, 0.1 to 1.0% Mn, 0.01 to 0.05% P, not more than 0.02% S, 0.01 to 0.1% sol.Al, not more than 0.004% N, 0.01 to 0.14% Nb, by weight, and balance of substantially Fe and inevitable impurities, and has not less than 0.21 of n value calculated from two points (1% and 10%) of nominal strain determined by the uniaxial tensile test, and relates to a method for manufacturing the cold rolled steel sheet. The present invention provides a high strength cold rolled steel sheet for automobile exterior panels having excellent combined formability, resistance to embrittlement during secondary operation, formability at welded portions, anti-burring performance, good surface appearance, and uniformity of material in a coil.
    Type: Application
    Filed: April 15, 2002
    Publication date: December 5, 2002
    Applicant: NKK CORPORATION
    Inventors: Takeshi Fujita, Fusato Kitano, Yoshihiro Hosoya, Toru Inazumi, Yuji Yamasaki, Masaya Morita, Yasunobu Nagataki, Kohei Hasegawa, Hiroshi Matsuda, Moriaki Ono
  • Patent number: 6245852
    Abstract: A stable organopolysiloxane emulsion is briefly prepared by emulsifying and dispersing a low molecular weight organopolysiloxane (A) in water in the presence of an organic sulfonic acid or organic sulfate anionic surfactant (B) to form an initial emulsion having a mean particle size of up to 300 nm, and effecting polymerization reaction, followed by neutralization.
    Type: Grant
    Filed: August 12, 1999
    Date of Patent: June 12, 2001
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kohei Hasegawa, Satoshi Kuwata
  • Patent number: 5679799
    Abstract: There is disclosed a method for producing oxyindoles, which comprises reacting a 2-halogenophenylacetic acid or its salt with ammonia in the presence of a copper salt catalyst, and heating a mixture of the produced 2-aminophenylacetic acid or its salt and oxyindoles in the presence of an acid catalyst, to subject the 2-aminophenylacetic acid or its salt to a ring-closure reaction. According to this method, relatively readily available 2-halogenophenylacetic acids are used as a starting raw material to industrially produce highly pure oxyindoles in high yield in one pot without involving complicated steps. Further, since the amination is carried out at a temperature greatly lower than that of the conventional art, the lowering of the pH of the reaction liquid can be suppressed. Therefore, the restrictions on the specifications of the reaction apparatus, such as corrosion prevention and pressure resistance, can be mitigated.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: October 21, 1997
    Assignee: K-I Chemical Industry Co., Ltd.
    Inventors: Katsuhisa Isogai, Kohei Hasegawa
  • Patent number: 5580402
    Abstract: Disclosed is an aluminum alloy sheet having a chemical composition of an Si-containing Al--Mg--CU alloy. The aluminum alloy sheet exhibits a streak-shaped modulated structure at a diffraction grating points of an Al--Cu--Mg--system compound in the electron beam diffraction grating image. The above mentioned streak can be generated efficiently when the alloy essentially consists of 1.5 to 3.5% by weight of Mg, 0.3 to 1.0% by weight of Cu, 0.05 to 0.6% by weight of Si, and the balance of Al and inevitable impurities, and the ratio of Mg/Cu is in the range of 2 to 7. The alloy contains 0.01-0.50% of at least one element selected from the group consisting of Sn, Cd, and In.
    Type: Grant
    Filed: November 19, 1993
    Date of Patent: December 3, 1996
    Assignee: NKK Corporation
    Inventors: Takeshi Fujita, Masakazu Niikura, Shinji Mitao, Masataka Suga, Kohei Hasegawa
  • Patent number: 5460666
    Abstract: A method manufacturing an aluminum alloy sheet comprising preparing an aluminum alloy ingot essentially consisting of 1.5 to 3.5% by weight of Mg, 0.3 to 1.0% by weight of Cu, 0.05 to 0.6% by weight of Si, and a balance of Al, in which the ratio of Mg/Cu is in the range of 2 to 7, homogenizing the ingot in one step or in multiple steps, performed at a temperature within a range of 400 to 580.degree. C., preparing an alloy sheet having a desired sheet thickness by subjecting the ingot to a hot rolling and a cold rolling, subjecting the alloy sheet to heat treatment including heating the sheet up to a range of 500.degree. to 580.degree. C. at a heating rate of 3.degree. C./sec. or more, keeping it for 0 to 60 seconds at the temperature reached, and cooling it to 100.degree. C. or less at a looking rate of 2.degree. C./sec. or more, and keeping the alloy sheet at a temperature within a range of 180.degree. to 300.degree. C. for 3 to 60 seconds. Thus, a natural aging-retardated aluminum alloy sheet is obtained.
    Type: Grant
    Filed: March 2, 1994
    Date of Patent: October 24, 1995
    Assignees: NKK Corporation, Mitsubishi Aluminum Co., Ltd.
    Inventors: Takeshi Fujita, Kohei Hasegawa, Shinji Mitao, Masataka Suga, Masakazu Niikura, Koichi Ohori, Hiroshi Saitoh
  • Patent number: 5441582
    Abstract: Disclosed is a method manufacturing an aluminum alloy sheet comprising preparing an aluminum alloy ingot essentially consisting of 1.5 to 3.5% by weight of Mg, 0.3% to 1.0% by weight of Cu, 0.05 to 0.35% by weight of Si, 0.03 to 0.5% by weight of Fe, 0.005 to 0.15% by weight of Ti, 0.0002 to 0.05% by weight of B and a balance of Al, in which the ratio of Mg/Cu is in the range of 2 to 7, homogenizing the ingot in one step or in multiple steps, performed at a temperature within the range of 400.degree. to 580.degree. C., preparing an alloy sheet having a desired sheet thickness by subjecting the ingot to a hot rolling and a cold rolling, subjecting the alloy sheet to a heat treatment including heating the sheet up to a range of 500.degree. to 580.degree. C. at a heating rate of 3.degree. C./second or more, keeping it at the temperature reached for 0 to 60 seconds, and cooling at a cooling rate of 2.degree. C.
    Type: Grant
    Filed: January 27, 1994
    Date of Patent: August 15, 1995
    Assignee: NKK Corporation
    Inventors: Takeshi Fujita, Shinji Mitao, Kohei Hasegawa, Masataka Suga
  • Patent number: 5296511
    Abstract: The present film-former composition comprises (a) an organosilazane copolymer having a perfluoroalkyl group-containing structural unit and a methacryloyloxy group-containing structural unit, (b) a photosensitizer soluble in an organic solvent, and (c) an organic solvent. The composition is cured by irradiation with ultraviolet light for a short period of time to form a film excellent in water repellency, oil repellency, and hardness.
    Type: Grant
    Filed: February 7, 1992
    Date of Patent: March 22, 1994
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yoshihito Ohsawa, Kohei Hasegawa, Masanori Sutou, Satoshi Kuwata
  • Patent number: 5075622
    Abstract: A sheet thickness measuring apparatus comprises a metallic back-up surface for supporting the sheet, a magnetic field utilizing sensor disposed above the metallic back-up surface and the sheet for outputting a measured value representative of a distance up to the metallic back-up surface, an optical sensor and a computing unit.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: December 24, 1991
    Assignees: Sumitomo Heavy Industries, Ltd., Meisan Co., Ltd.
    Inventors: Eitaro Konii, Kohei Hasegawa, Yoshinori Tabara, Shigeru Ichikawa