Patents by Inventor Koichi Niihara

Koichi Niihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6313051
    Abstract: The present invention provides a method for the manufacture of ceramic composite fibers, and the present invention relates to a method for the manufacture of a composite fiber in which a second phase is dispersed within a matrix fiber, wherein the matrix consists of a substance selected from alumina, zirconia, mullite, YAG, silica, magnesia, nitrides, carbides, metals, alloys, and polymers; the second phase consists of a substance selected from zirconia, mullite, YAG, and other oxides, or from metals; and the composite fiber is produced by synthesizing a fiber from a precursor solution containing the substance of the matrix, and the starting solution which serves as the second phase, dispersed through the matrix solution, and then heating the fiber.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: November 6, 2001
    Assignees: Agencey of Industrial Science and Technology, Fine Ceramics Research Association
    Inventors: Atsuya Towata, Mutsuo Sando, Koichi Niihara
  • Patent number: 6054094
    Abstract: A method for the manufacture of a ceramic composite fiber in which a second phase is dispersed within a matrix fiber, wherein the matrix consists of a substance selected from alumina, zirconia, mullite, YAG, silica, magnesia, nitrides, carbides, metals, alloys, and polymers; the second phase consists of a substance selected from zirconia, mullite, YAG, other oxides, and metals; and the composite fiber can be produced by synthesizing a fiber from a precursor solution containing the substance of the matrix, and the second phase starting solution dispersed through the solution, and then heating the fiber.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: April 25, 2000
    Assignees: Japan as represented by Director General of Agency of Industrial Science and Technology, Fine Ceramics Research Association
    Inventors: Atsuya Towata, Mutsuo Sando, Koichi Niihara
  • Patent number: 5863850
    Abstract: A zirconia based ceramic material having improved and well-balanced mechanical strength and toughness consists essentially of 0.5 to 50 vol % of Al.sub.2 O.sub.3 having an average grain size of 2 .mu.m or less and the balance of a partially stabilized zirconia having an average grain size of 5 .mu.m or less. The partially stabilized zirconia consists essentially of 8 to 12 mol % of CeO.sub.2, 0.05 to 4 mol % of TiO.sub.2 and the balance of ZrO.sub.2. Fine Al.sub.2 O.sub.3 grains having an average grain size of 1 .mu.m or less are dispersed within the grains of the partially stabilized zirconia at a dispersion ratio. The dispersion ratio is defined as a ratio of the number of Al.sub.2 O.sub.3 grains dispersed within the grains of the partially stabilized zirconia relative to the number of the entire Al.sub.2 O.sub.3 grains dispersed in the ceramic material, and at least 2% in the present invention. The ceramic material can be made by the following process.
    Type: Grant
    Filed: May 27, 1997
    Date of Patent: January 26, 1999
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Masahiro Nawa, Shoichi Nakamoto, Keiichi Yamasaki, Koichi Niihara, Atsushi Nakahira, Tohru Sekino
  • Patent number: 5854158
    Abstract: A ZrO.sub.2 based ceramic material having excellent mechanical strength and fracture toughness comprises a first phase of ZrO.sub.2 grains containing CeO.sub.2 as a stabilizer and having an average grain size of 5 .mu.m or less, a second phase of Al.sub.2 O.sub.3 grains having an average grain size of 2 .mu.m or less, and a third phase of elongated crystals of a complex oxide of Al, Ce, and one of Mg and Ca. At least 90 vol % of the first phase is composed of tetragonal ZrO.sub.2. An aluminum (Al) content in the ceramic material is determined such that when Al of the complex oxide is converted to Al.sub.2 O.sub.3, a total amount of Al.sub.2 O.sub.3 in the ceramic material is within a range of 0.5 to 50 vol %. A content of the third phase in the ceramic material is determined within a range of 0.5 to 5 by area %. It is preferred that fine Al.sub.2 O.sub.3 grains having an average grain size of 1 .mu.m or less of the second phase are dispersed within the ZrO.sub.2 grains at a dispersion ratio of at least 2%.
    Type: Grant
    Filed: June 11, 1997
    Date of Patent: December 29, 1998
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Masahiro Nawa, Shoichi Nakamoto, Koichi Niihara, Tohru Sekino
  • Patent number: 5854157
    Abstract: An object of the present invention is to provide a novel ceramic composite that has not only excellent dynamic characteristics, but also good electromagnetic characteristics, typified by dielectric characteristics, and the present invention relates to a ceramic composite, characterized in that an oxide having a perovskite structure which includes as raw materials lead and/or an alkaline earth metal is dispersed in a ceramic matrix, and in the above-mentioned ceramic composite, preferably the ceramic matrix is MgO, MgAl.sub.2 O.sub.4, or ZrO.sub.2, and also, preferably in the above-mentioned ceramic composite, the perovskite structure oxide particles are covered with MgO, MgAl.sub.2 O.sub.4, or ZrO.sub.2, and the ceramic matrix is Al.sub.2 O.sub.3.
    Type: Grant
    Filed: April 29, 1997
    Date of Patent: December 29, 1998
    Assignees: Agency of Industrial Science and Technology, Fine Ceramics Research Association
    Inventors: Hae Jin Hwang, Masaki Yasuoka, Mutsuo Sando, Toru Nagai, Koichi Niihara
  • Patent number: 5759460
    Abstract: A ceramic porous body composed principally of silicon carbide or silicon nitride which has higher strength, higher heat resistance and higher thermal shock resistance and has a large number of fine pores, and a method of producing the same. The ceramic porous body, comprised principally of silicon carbide or silicon nitride, has a pore diameter of not more than 1 .mu.m, with a porosity of not less than 35%, and has a flexural strength of not less than 100 MPa. The ceramic porous body is produced by using a silicon oligomer which is capable of producing silicon carbide or silicon nitride when calcined, mixing the silicon oligomer with a silicon carbide powder or silicon nitride powder, and/or other ceramic powder which has a mean particle diameter of not more than 1.0 .mu.m, molding the mixture into shape, then sintering the molding in a suitable atmosphere at temperatures of not less than 1200.degree. C.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: June 2, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Koichi Niihara, Akira Yamakawa
  • Patent number: 5750449
    Abstract: A ceramic porous body composed principally of silicon carbide or silicon nitride which has higher strength, higher heat resistance and higher thermal shock resistance and has a large number of fine pores, and a method of producing the same. The ceramic porous body, comprised principally of silicon carbide or silicon nitride, has a pore diameter of not more than 1 .mu.m, with a porosity of not less than 35%, and has a flexural strength of not less than 100 MPa. The ceramic porous body is produced by using a silicon oligomer which is capable of producing silicon carbide or silicon nitride when calcined, mixing the silicon oligomer with a silicon carbide powder or silicon nitride powder, and/or other ceramic powder which has a mean particle diameter of not more than 1.0 .mu.m, molding the mixture into shape, then sintering the molding in a suitable atmosphere at temperatures of not less than 1200.degree. C.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: May 12, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Koichi Niihara, Akira Yamakawa
  • Patent number: 5728636
    Abstract: A zirconia based ceramic material having improved and well-balanced mechanical strength and toughness consists essentially of 0.5 to 50 vol % of Al.sub.2 O.sub.3 having an average grain size of 2 .mu.m or less and the balance of a partially stabilized zirconia having an average grain size of 5 .mu.m or less. The partially stabilized zirconia consists essentially of 8 to 12 mol % of CeO.sub.2, 0.05 to 4 mol % of TiO.sub.2 and the balance of ZrO.sub.2. Fine Al.sub.2 O.sub.3 grains having an average grain size of 1 .mu.m or less are dispersed within the grains of the partially stabilized zirconia at a dispersion ratio. The dispersion ratio is defined as a ratio of the number of Al.sub.2 O.sub.3 grains dispersed within the grains of the partially stabilized zirconia relative to the number of the entire Al.sub.2 O.sub.3 grains dispersed in the ceramic material, and at least 2% in the present invention. The ceramic material can be made by the following process.
    Type: Grant
    Filed: October 17, 1995
    Date of Patent: March 17, 1998
    Assignees: Matsushita Elec. Works, Ltd., Koichi Niihara
    Inventors: Masahiro Nawa, Shoichi Nakamoto, Keiichi Yamasaki, Koichi Niihara, Atsushi Nakahira, Tohru Sekino
  • Patent number: 5686366
    Abstract: A platelet .alpha.-Al.sub.2 O.sub.3 based ceramic composite consists of Al.sub.2 O.sub.3 powder, promoters and controllers. The composite is prepared by mixing aluminum oxide powder with promoters and controllers. The mixture is shaped and sintered to form an object. In one embodiment of the invention, the promoters are either salts or oxides of alkaline metals and alkaline earth metals. The salts are oxidized during sintering.
    Type: Grant
    Filed: August 3, 1994
    Date of Patent: November 11, 1997
    Assignee: Mitsubishi Materials Corporation
    Inventors: Takashi Koyama, Koichi Niihara
  • Patent number: 5637269
    Abstract: A process for the production of a sintered composite boron carbide body, the process comprising:(a) mixing 40.0 to 99.5 volume % of B.sub.4 C with 0.5 to 60.0 volume % of fine grain powdered SiC, TiC, or both in an organic solvent;(b) drying to form a powder mix; and(c) hot pressing the mix at 1,800.degree. to 2,300.degree. C. for 5 to 600 minutes,whereby the body comprises SiC, TiB.sub.2 or both dispersed in the B.sub.4 C and whereby the body further comprises(i) B.sub.4 C matrix crystal grains having an average grain size of not more than 3.0 .mu.m and(ii) dispersed uniform fine grains of SiC, TiB.sub.2, or both having an average grain size of 1 to 500 nm free of coarse grains and whiskers, the dispersed fine grains being distributed within the matrix crystal grains.
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: June 10, 1997
    Assignees: Koichi Niihara, Sumitomo Electric Industries, Inc.
    Inventor: Koichi Niihara
  • Patent number: 5585055
    Abstract: The strength of a composite sintered body including yttrium oxide is improved. A composite ceramics sintered body includes a matrix of yttrium oxide and silicon carbide particles dispersed within the matrix. A compound oxide phase including yttrium and silicon is present at the surface of the sintered body. A sintered body is obtained by compression-molding mixed powder including yttrium oxide powder and silicon carbide powder in an inert gas atmosphere of at least 1550.degree. C. The sintered body is subjected to a heat treatment for at least 0.5 hour and not more than 12 hours in an atmosphere including oxygen gas in the range of at least 900.degree. C. and less than 1200.degree. C.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: December 17, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masashi Yoshimura, Koichi Niihara
  • Patent number: 5525560
    Abstract: A zirconia based composite material with improved strength and toughness includes a partially stabilized zirconia including 1.5 to 4.5 mol % of yttrium oxide as a matrix thereof and a metal phase of at least one metal selected from the group consisting of titanium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten as metal grains dispersed in the matrix. The metal phase has a melting point higher than a sintering temperature of the partially stabilized zirconia. In addition, it is preferred that the composite material further contains a ceramic phase of at least one ceramic selected from the group consisting of Al.sub.2 O.sub.3, SiC, Si.sub.3 N.sub.4, B.sub.4 C, carbides, nitrides and borides of titanium, vanadium, niobium, tantalum, chromium, molybdenum and tungsten as ceramic grains dispersed in the matrix. The composite material of the present invention is manufactured by the following steps.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: June 11, 1996
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Keiichi Yamazaki, Masahiro Nawa, Koichi Niihara, Atsushi Nakahira, Tohru Sekino
  • Patent number: 5459111
    Abstract: The strength of a composite sintered body including yttrium oxide is improved. A composite ceramics sintered body includes a matrix of yttrium oxide and silicon carbide particles dispersed within the matrix. A compound oxide phase including yttrium and silicon is present at the surface of the sintered body. A sintered body is obtained by compression-molding mixed powder including yttrium oxide powder and silicon carbide powder in an inert gas atmosphere of at least 1550.degree. C. The sintered body is subjected to a heat treatment for at least 0.5 hour and not more than 12 hours in an atmosphere including oxygen gas in the range of at least 900.degree. C. and less than 1200.degree. C.
    Type: Grant
    Filed: November 30, 1993
    Date of Patent: October 17, 1995
    Assignees: Sumitomo Electric Industries, Ltd., Koichi Niihara
    Inventors: Masashi Yoshimura, Koichi Niihara
  • Patent number: 5418196
    Abstract: A sintered composite boron carbide body with SiC and/or TiB.sub.2 having a grain size of the order of nanometers and distributed among B.sub.4 C crystal grains and/or within the B.sub.4 C crystal grains is produced by hot-pressing a powder mix, which is composed of 44-99.5 vol. % B.sub.4 C, 0.5-60 vol. % SiC and/or 0.5-60 vol. % TiC, at 1,800-2,300.degree. C. for 5-600 minutes.
    Type: Grant
    Filed: December 6, 1991
    Date of Patent: May 23, 1995
    Assignees: Koichi Niihara, Sumitomo Electric Industries, Ltd.
    Inventor: Koichi Niihara
  • Patent number: 5403795
    Abstract: A platelet .alpha.-Al.sub.2 O.sub.3 based ceramic composite consists of Al.sub.2 O.sub.3 powder, promoters and controllers. The composite is prepared by mixing aluminum oxide powder with promoters and controllers. The mixture is shaped and sintered to form an object. In one embodiment of the invention, the promoters are either salts or oxides of alkaline metals and alkaline earth metals. The salts are oxidized during sintering.
    Type: Grant
    Filed: April 19, 1993
    Date of Patent: April 4, 1995
    Assignee: Mitsubishi Materials Corporation
    Inventors: Takashi Koyama, Koichi Niihara
  • Patent number: 5389590
    Abstract: A sintered ceramic-metal composite product has a ceramic matrix of polycrystalline ceramic in which a metal phase is dispersed for adding improved toughness. The metal phase has a higher melting point than the sintering temperature of the ceramic matrix and comprises at least one metal selected from the groups IVa, Va and VIa of the periodic table. The metal phase is dispersed intragranular within the grains of the ceramic matrix to realize nano-order dispersion of the metal phase which is responsible for remarkably improved toughness as well as strength. The ceramic-metal composite product is successfully fabricated by several unique methods utilizing the mixture of the ceramic and metal or metal oxide, hydride or alkoxide.
    Type: Grant
    Filed: February 7, 1994
    Date of Patent: February 14, 1995
    Assignees: Matsushita Electric Works, Ltd., Koichi Niihara
    Inventors: Masahiro Nawa, Koichi Niihara, Atsushi Nakahira, Tohru Sekino
  • Patent number: 5376599
    Abstract: Carbon fiber reinforced silicon nitride based nanocomposite material is produced by mixing a powder mixture of silicon nitride powders (with or without alumina powders), and fine silicon carbide powders, with a solution of a preceramic polymer containing silicon and nitrogen, to form a solution for impregnation, by passing carbon fibers through the solution to produce a mass of impregnated carbon fibers, forming the mass to a desired shape and by sintering in an inert atmosphere. Ultra-high strength and toughness are produced due to reinforcement by nanocompositization of the matrix phase, that by dispersion of fine particles and that by long carbon fibers, part of matrix phase is generated by thermal cracking of preceramic polymer.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: December 27, 1994
    Assignees: Noritake Co., Limited, Koichi Niihara
    Inventors: Kenji Oshima, Tsugio Ito, Yoshitsugu Kato, Koichi Niihara, Atsushi Nakahira, Misao Iwata
  • Patent number: 5322823
    Abstract: A ceramics composites prepared by dispersing any one of the following materials (i) to (viii) in Al.sub.2 O.sub.3 which as a matrix-containing crystalline grains having a grain size of 0.5 to 100 .mu.m. (i) 3 to 40% by volume of fine TiN particles having a particle size of not more than 2 .mu.m and 3 to 40% by volume of fine SiC particles having a particle size of not more than 2 .mu.m. (ii) 3 to 40% by volume of fine TiN particles having a particle size of not more than 2 .mu.m and 3 to 40% by volume of fine Si.sub.3 N.sub.4 particles having a particle size of not more than 2 .mu.m. (iii) 2 to 35% by volume of fine TiC particles having a particle size of not more than 2 .mu.m and 5 to 40% by volume of SiC whiskers having a diameter of 0.05 to 2 .mu.m. (iv) 2 to 35% by volume of fine TiC particles having a particle size of not more than 2 .mu.m and 5 to 40% by volume of Si.sub.3 N.sub.4 whiskers having a diameter of 0.1 to 2 .mu.m.
    Type: Grant
    Filed: March 8, 1993
    Date of Patent: June 21, 1994
    Assignees: Mitsubishi Materials Corp., Koichi Niihara
    Inventors: Hisao Ueda, Ryuichi Matsuki, Takeyoshi Takenouchi, Hiroshi Sasaki, Koichi Niihara
  • Patent number: 5296301
    Abstract: A sintered ceramic-metal composite product has a ceramic matrix of polycrystalline ceramic in which a metal phase is dispersed for adding improved toughness. The metal phase has a higher melting point than the sintering temperature of the ceramic matrix and comprises at least one metal selected from the groups IVa, Va and VIa of the periodic table. The metal phase is dispersed intragranular within the grains of the ceramic matrix to realize nano-order dispersion of the metal phase which is responsible for remarkably improved toughness as well as strength. The ceramic-metal composite product is successfully fabricated by several unique methods utilizing the mixture of the ceramic and metal or metal oxide, hydride or alkoxide.
    Type: Grant
    Filed: October 1, 1991
    Date of Patent: March 22, 1994
    Assignees: Matsushita Electric Works, Ltd., Koichi Niihara
    Inventors: Masahiro Nawa, Koichi Niihara, Atsushi Nakahira, Tohru Sekino
  • Patent number: 5173459
    Abstract: An Si.sub.3 N.sub.4 -Al.sub.2 O.sub.3 composite sintered body suitable for use in high-temperature structural materials consists of .alpha.-Al.sub.2 O.sub.3 and at least one crystal phase of Si.sub.3 N.sub.4 and sialon and is produced by sintering a shaped body of a particular Si.sub.3 N.sub.4 -Al.sub.2 O.sub.3 mixed powder at 1,500.degree.-1,900.degree. C.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: December 22, 1992
    Assignees: Koichi Niihara, Toshio Hirai, NGK Insulators, Ltd.
    Inventors: Koichi Niihara, Atsushi Nakahira, Toshio Hirai