Patents by Inventor Koichi Niihara

Koichi Niihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5134097
    Abstract: A sintered silicon nitride-silicon carbide composite material is provided comprising a matrix phase of silicon nitride and silicon carbide where silicon carbide grains having an average diameter of not more than 1 .mu.m are present at grain boundaries of silicon nitride grains and silicon carbide grains having a diameter of several nanometers to several hundred nanometers, typically not more than about 0.5 micrometers, are dispersed within the silicon nitride grains and a dispersion phase where (a) silicon carbide grains having an average diameter of 2 to 50 .mu.m and/or (b) silicon carbide whiskers having a short axis of 0.05 to 10 .mu.m and an aspect ratio of 5 to 300 are dispersed in the matrix phase. A process for the production of the composite material is also provided.
    Type: Grant
    Filed: November 4, 1991
    Date of Patent: July 28, 1992
    Assignee: Mitsubishi Gas Chemical Co., Inc.
    Inventors: Koichi Niihara, Kansei Izaki, Takamasa Kawakami
  • Patent number: 5130277
    Abstract: A MgO/SiC composite material in which SiC particles with nano-meter order in size are dispersed within MgO matrix grains can be prepared by hot-pressing the mixture of fine MgO and SiC powders. Addition of SiC particles in the range of 5 volume percent to 50 volume percent to the MgO matrix increased remarkably the fracture strength and the hardness in a nanometer-order structure of the composite.
    Type: Grant
    Filed: August 15, 1989
    Date of Patent: July 14, 1992
    Assignee: Mitsubishi Mining & Cement Company, Ltd.
    Inventors: Hisao Ueda, Hiroshi Sasaki, Koichi Niihara
  • Patent number: 4889835
    Abstract: SiC-Al.sub.2 O.sub.3 composite sintered bodies having high strength and toughness are constructed by dispersing SiC particle and SiC whisker into a matrix of Al.sub.2 Ohd 3 particles.
    Type: Grant
    Filed: September 20, 1988
    Date of Patent: December 26, 1989
    Assignee: NGK Insulators, Ltd.
    Inventors: Koichi Niihara, Atsushi Nakahira
  • Patent number: 4889834
    Abstract: SiC-Al.sub.2 O.sub.3 composite sintered bodies having high strength and toughness are constructed by dispersing SiC particles essentially inside individual of Al.sub.2 O.sub.3 grains constituting a material.
    Type: Grant
    Filed: September 20, 1988
    Date of Patent: December 26, 1989
    Assignee: NGK Insulators, Ltd.
    Inventors: Koichi Niihara, Atsushi Nakahira
  • Patent number: 4746635
    Abstract: An alumina-zirconia-silicon carbide sintered ceramic composite having high strength and high hardness is composed of 5 to 50 volume percent of partially stabilized zirconia powder of mean particle size between 0.1 and 1.0 .mu.m, 3 to 40 volume percent of silicon carbide powder of mean particle size smaller than 1 .mu.m or silicon carbide whiskers of 1 .mu.m or less in diameter with an aspect ratio between 3 and 200 or combination of said silicon carbide powder and said silicon carbide whiskers, the balance being substantially alumina powder, wherein zirconia plus silicon carbide accounts for 55 volume percent at most of the total.The sintered ceramic composite is manufactured by making a mixed powder composed of 5 to 50 volume percent of partially stabilized zirconia powder of mean particle size between 0.1 and 1.0 .mu.m, 3 to 40 volume percent of silicon carbide powder of mean particle size smaller than 1 .mu.m or silicon carbide whiskers of 1 .mu.
    Type: Grant
    Filed: May 19, 1986
    Date of Patent: May 24, 1988
    Assignees: Kabushiki Kaisha Riken, Toshio Hirai, Koichi Niihara
    Inventors: Sigeo Inoue, Tetsuo Uchiyama, Toshio Hirai, Koichi Niihara
  • Patent number: 4340568
    Abstract: A super hard-highly pure silicon nitride includes a preferentially oriented crystalline silicon nitride having a grain size of 1-50 .mu.m and a micro Vickers hardness of 5,000 kg/mm.sup.2 under a load of 100 g, a finely grained crystalline silicon nitride having an average grain size of less than 1 .mu.m and a micro Vickers hardness of 3,500 kg/mm.sup.2 under a load of 100 g, and an amorphous silicon nitride having a micro Vickers hardness of 2,200 kg/mm.sup.2 under a load of 100 g, and is produced by blowing a nitrogen depositing source and a silicon depositing source on a substrate heated at 500.degree.-1,900.degree. C. with a blowpipe composed of a pipe assembly wherein a first pipe for the nitrogen depositing source is surrounded with a second pipe for the silicon depositing source and the distance from an opening end of the first pipe to the substrate is shorter than the distance from an opening end of the second pipe to the substrate.
    Type: Grant
    Filed: January 28, 1980
    Date of Patent: July 20, 1982
    Assignee: The Research Institute for Iron, Steel and Other Metals of the Tohoku University
    Inventors: Toshio Hirai, Koichi Niihara
  • Patent number: 4312921
    Abstract: A super hard-highly pure silicon nitride includes a preferentially oriented crystalline silicon nitride having a grain size of 1-50 .mu.m and a micro Vickers hardness of 3,000 kg/mm.sup.2 under a load of 100 g, a finely grained crystalline silicon nitride having an average grain size of less than 1 .mu.m and a micro Vickers hardness of 3,500 kg/mm.sup.2 under a load of 100 g, and an amorphous silicon nitride having a micro Vickers hardness of 2,200 kg/mm.sup.2 under a load of 100 g, and is produced by blowing a nitrogen depositing source and a silicon depositing source on a substrate heated at 500.degree.-1,900.degree. C. with a blowpipe composed of a pipe assembly wherein a first pipe for the nitrogen depositing source is surrounded with a second pipe for the silicon depositing source and the distance from an opening end of the first pipe to the substrate is shorter than the distance from an opening end of the second pipe to the substrate.
    Type: Grant
    Filed: July 21, 1978
    Date of Patent: January 26, 1982
    Assignee: The Research Institute for Iron, Steel and Other Metals of the Tohoku University
    Inventors: Toshio Hirai, Koichi Niihara
  • Patent number: 4312924
    Abstract: A super hard-highly pure silicon nitride includes a preferentially oriented crystalline silicon nitride having a grain size of 1-50 .mu.m and a micro Vickers hardness of 3,000 kg/mm.sup.2 under a load of 100 g, a finely grained crystalline silicon nitride having an average grain size of less than 1 .mu.m and a micro Vickers hardness of 3,500 kg/mm.sup.2 under a load of 100 g, and an amorphous silicon nitride having a micro Vickers hardness of 2,200 kg/mm.sup.2 under a load of 100 g, and is produced by blowing a nitrogen depositing source and a silicon depositing source on a substrate heated at 500.degree.-1,900.degree. C. with a blowpipe composed of a pipe assembly wherein a first pipe for the nitrogen depositing source is surrounded with the second pipe for silicon depositing source and the distance from an opening end of the first pipe to the substrate is shorter than a distance from an opening end of the second pipe to the substrate.
    Type: Grant
    Filed: March 11, 1980
    Date of Patent: January 26, 1982
    Assignee: The Research Institute for Iron, Steel and Other Metals of the Tohoku University
    Inventors: Toshio Hirai, Koichi Niihara
  • Patent number: 4279689
    Abstract: A super hard-highly pure silicon nitride includes a preferentially oriented crystalline silicon nitride having a grain size of 1-50 .mu.m and a micro Vickers hardness of 3,000 kg/mm.sup.2 under a load of 100 g, a finely grained crystalline silicon nitride having an average grain size of less than 1 .mu.m and a micro Vickers hardness of 3,500 kg/mm.sup.2 under a load of 100 g, and an amorphous silicon nitride having a micro Vickers hardness of 2,200 kg/mm.sup.2 under a load of 100 g, and is produced by blowing a nitrogen depositing source and a silicon depositing source on a substrate heated at 500.degree.-1,900.degree. C. with a blowpipe composed of a pipe assembly wherein a first pipe for the nitrogen depositing source is surrounded with a second pipe for the silicon depositing source and the distance from an opening end of the first pipe to the substrate is shorter than the distance from an opening end of the second pipe to the substrate.
    Type: Grant
    Filed: July 21, 1978
    Date of Patent: July 21, 1981
    Assignee: The Research Institute for Iron, Steel and Other Metals of the Tohoku University
    Inventors: Toshio Hirai, Koichi Niihara
  • Patent number: 4224296
    Abstract: A super hard-highly pure silicon nitride includes a preferentially oriented crystalline silicon nitride having a grain size of 1-50 .mu.m and a micro Vickers hardness of 3,000 kg/mm.sup.2 under a load of 100 g, a finely grained crystalline silicon nitride having an average grain size of less than 1 .mu.m and a micro Vickers hardness of 3,500 kg/mm.sup.2 under a load of 100 g, and an amorphous silicon nitride having a micro Vickers hardness of 2,200 kg/mm.sup.2 under a load of 100 g, and is produced by blowing a nitrogen depositing source and a silicon depositing source on a substrate heated at 500.degree.-1,900.degree. C. with a blowpipe composed of a pipe assembly wherein a first pipe for the nitrogen depositing source is surrounded with a second pipe for the silicon depositing source and the distance from an opening end of the first pipe to the substrate is shorter than the distance from an opening end of the second pipe to the substrate.
    Type: Grant
    Filed: July 21, 1978
    Date of Patent: September 23, 1980
    Assignee: The Research Institute for Iron, Steel and Other Metals of the Tohoku University
    Inventors: Toshio Hirai, Koichi Niihara
  • Patent number: 4118539
    Abstract: A super hard-highly pure silicon nitride includes a preferentially oriented crystalline silicon nitride having a grain size of 1-50 .mu.m and a micro Vickers hardness of 3,000 kg/mm.sup.2 under a load of 100 g, a finely grained crystalline silicon nitride having an average grain size of less than 1 .mu.m and a micro Vickers hardness of 3,500 kg/mm.sup.2 under a load of 100 g, and an amorphous silicon nitride having a micro Vickers hardness of 2,200 kg/mm.sup.2 under a load of 100 g, and is produced by blowing a nitrogen depositing source and a silicon depositing source on a substrate heated at 500.degree.-1,900.degree. C with a blowpipe composed of a pipe assembly wherein a first pipe for the nitrogen depositing source is surrounded with a second pipe for the silicon depositing source and the distance from an opening end of the first pipe to the substrate is shorter than the distance from an opening end of the second pipe to the substrate.
    Type: Grant
    Filed: January 3, 1977
    Date of Patent: October 3, 1978
    Assignee: The Research Institute for Iron, Steel and Other Metals of the Tohoku University
    Inventors: Toshio Hirai, Koichi Niihara