Patents by Inventor Koichi Tanabe

Koichi Tanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110127441
    Abstract: An X-ray detector provided for a radiation image pickup apparatus of this invention includes two types of areas, i.e. an image area for X-ray detection, and an image area for time variation noise detection to detect time variation noises generating from circuits of the X-ray detector. Consequently, time variation noises can be detected properly, regardless of damage to gate circuits of an active matrix substrate, by reading charge signals from the image area for time variation noise detection before a gate drive circuit is set to ON. As a result, a radiation image pickup apparatus with improved image quality can be manufactured.
    Type: Application
    Filed: July 24, 2008
    Publication date: June 2, 2011
    Inventor: Koichi Tanabe
  • Publication number: 20100019176
    Abstract: With the imaging apparatus of this invention, an image is divided equally into four areas, and a setting is made for reading of carriers before irradiation to be carried out separately according to images of the divided areas. By dividing the reading of carriers before irradiation in this way, when compared with the reading of carriers for an entire area of an image (i.e. a frame) in the prior art, each storage and reading time can be shortened to one of the number of divisions. A time serving as a starting point of an irradiation wait time occurs before the reading of carriers before irradiation. Consequently, even if the time serving as the starting point of the irradiation wait time varies, the variation takes place only during each storage and reading set short. Thus, the variation of the irradiation wait time is made less than in the prior art, thereby improving response.
    Type: Application
    Filed: December 12, 2006
    Publication date: January 28, 2010
    Inventor: Koichi Tanabe
  • Patent number: 7377691
    Abstract: A radiographic apparatus obtains lag-free radiation detection signals with lag-behind parts removed from radiation detection signals taken from a flat panel X-ray detector as X rays are emitted from an X-ray tube. The lag-behind parts are removed by a recursive computation on an assumption that the lag-behind part included in each X-ray detection signal is due to an impulse response formed of exponential functions, N in number, with different attenuation time constants. X-ray images are created from the lag-free radiation detection signals.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: May 27, 2008
    Assignee: Shimadzu Corporation
    Inventors: Shoichi Okamura, Keiichi Fujii, Susumu Adachi, Shinya Hirasawa, Toshinori Yoshimuta, Koichi Tanabe, Masatomo Kaino, Hiroshi Koyama
  • Patent number: 7313218
    Abstract: A radiographic apparatus removes lag-behind parts from radiation detection signals taken from an FPD as X rays are emitted from an X-ray tube, on an assumption that the lag-behind part included in each X-ray detection signal is due to an impulse response formed of a plurality of exponential functions with different attenuation time constants. When a single attenuation time constant and intensity are provisionally set, checking is made whether an attenuation to a noise level of X-ray detection signals occurs in an X-ray non-emission state following an X-ray emission state. When the set attenuation time constant and intensity are found appropriate (OK), the impulse response having the single exponential function is determined valid. Corrected radiation detection signals are obtained by removing the lag-behind parts using the impulse response determined.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: December 25, 2007
    Assignee: Shimadzu Corporation
    Inventors: Shoichi Okamura, Keiichi Fujii, Susumu Adachi, Shinya Hirasawa, Toshinori Yoshimuta, Koichi Tanabe, Shigeya Asai, Akihiro Nishimura
  • Patent number: 7203279
    Abstract: In the radiographic apparatus according to this invention, when a radiographic mode designator 16 designates a non-standard radiographic mode, a signal corrector 15 uses defect information stored in one of non-standard image defect information memories 18B–18E for correcting X-ray detection signals outputted from an FPD 2. Since the pixel defect information for non-standard X-ray images is acquired by a pixel defect information converter 19 through a conversion from defect information for standard X-ray images stored in a standard image defect information memory 18A, it is unnecessary to collect output signals for pixel defect information acquisition from the FPD 2 all over again. As a result, abnormal X-ray detection signals due to defects of radiation detecting elements may be corrected promptly, regardless of how the radiation detecting elements are assigned to the pixels in the X-ray images.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: April 10, 2007
    Assignee: Shimadzu Corporation
    Inventors: Keiichi Fujii, Shoichi Okamura, Susumu Adachi, Shinya Hirasawa, Toshinori Yoshimuta, Koichi Tanabe, Shigeya Asai, Akihiro Nishimura
  • Publication number: 20070036270
    Abstract: When performing a lag correction of a lag-behind part by eliminating the lag-behind part from an X-ray detection signal obtained, a plurality of X-ray detection signals in time of non-irradiation before X-ray irradiation in an imaging event, and a lag image based on the X-ray detection signals acquired. The lag correction performed by subtracting the lag image acquired from the X-ray detection signal. Thus, the lag-behind part is eliminated from the X-ray detection signal in a simple way.
    Type: Application
    Filed: April 26, 2006
    Publication date: February 15, 2007
    Inventors: Shoichi Okamura, Koichi Tanabe
  • Publication number: 20050220268
    Abstract: In the radiographic apparatus according to this invention, when a radiographic mode designator 16 designates a non-standard radiographic mode, a signal corrector 15 uses defect information stored in one of non-standard image defect information memories 18B-18E for correcting X-ray detection signals outputted from an FPD 2. Since the pixel defect information for non-standard X-ray images is acquired by a pixel defect information converter 19 through a conversion from defect information for standard X-ray images stored in a standard image defect information memory 18A, it is unnecessary to collect output signals for pixel defect information acquisition from the FPD 2 all over again. As a result, abnormal X-ray detection signals due to defects of radiation detecting elements may be corrected promptly, regardless of how the radiation detecting elements are assigned to the pixels in the X-ray images.
    Type: Application
    Filed: March 24, 2005
    Publication date: October 6, 2005
    Inventors: Keiichi Fujii, Shoichi Okamura, Susumu Adachi, Shinya Hirasawa, Toshinori Yoshimuta, Koichi Tanabe, Shigeya Asai, Akihiro Nishimura
  • Publication number: 20050031079
    Abstract: A radiographic apparatus removes lag-behind parts from radiation detection signals taken from an FPD as X rays are emitted from an X-ray tube, on an assumption that the lag-behind part included in each X-ray detection signal is due to an impulse response formed of a plurality of exponential functions with different attenuation time constants. The lag-behind parts are removed by using impulse responses of the FPD corresponding, for example, to an X-ray dose used in a fluoroscopic image pickup and an X-ray dose used in a radiographic image pickup. X-ray images are created from corrected radiation detection signals with the lag-behind parts removed therefrom.
    Type: Application
    Filed: July 8, 2004
    Publication date: February 10, 2005
    Inventors: Shoichi Okamura, Keiichi Fujii, Susumu Adachi, Shinya Hirasawa, Toshinori Yoshimuta, Koichi Tanabe, Shigeya Asai, Akihiro Nishimura
  • Publication number: 20050031088
    Abstract: A subtraction image is obtained, by a subtraction process (DSA process), from a live image and a mask image. A lag-behind part included in each X-ray detection signal is considered due to an impulse response formed of exponential functions. The lag-behind part is removed from each X-ray detection signal by a recursive computation to obtain a corrected X-ray detection signal. The live image and mask image are obtained from such corrected detection signals.
    Type: Application
    Filed: July 12, 2004
    Publication date: February 10, 2005
    Inventors: Shoichi Okamura, Keiichi Fujii, Susumu Adachi, Shinya Hirasawa, Toshinori Yoshimuta, Koichi Tanabe, Shigeya Asai, Akihiro Nishimura
  • Publication number: 20050031070
    Abstract: A radiographic apparatus removes lag-behind parts from radiation detection signals taken from an FPD as X rays are emitted from an X-ray tube, on an assumption that the lag-behind part included in each X-ray detection signal is due to an impulse response formed of a plurality of exponential functions with different attenuation time constants. When a single attenuation time constant and intensity are provisionally set, checking is made whether an attenuation to a noise level of X-ray detection signals occurs in an X-ray non-emission state following an X-ray emission state. When the set attenuation time constant and intensity are found appropriate (OK), the impulse response having the single exponential function is determined valid. Corrected radiation detection signals are obtained by removing the lag-behind parts using the impulse response determined.
    Type: Application
    Filed: July 29, 2004
    Publication date: February 10, 2005
    Inventors: Shoichi Okamura, Keiichi Fujii, Susumu Adachi, Shinya Hirasawa, Toshinori Yoshimuta, Koichi Tanabe, Shigeya Asai, Akihiro Nishimura
  • Publication number: 20040156481
    Abstract: A radiographic apparatus obtains lag-free radiation detection signals with lag-behind parts removed from radiation detection signals taken from a flat panel X-ray detector as X rays are emitted from an X-ray tube. The lag-behind parts are removed by a recursive computation on an assumption that the lag-behind part included in each X-ray detection signal is due to an impulse response formed of exponential functions, N in number, with different attenuation time constants. X-ray images are created from the lag-free radiation detection signals.
    Type: Application
    Filed: January 16, 2004
    Publication date: August 12, 2004
    Inventors: Shoichi Okamura, Keiichi Fujii, Susumu Adachi, Shinya Hirasawa, Toshinori Yoshimuta, Koichi Tanabe, Masatomo Kaino, Hiroshi Koyama