Patents by Inventor Koichiro Asazawa

Koichiro Asazawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240309527
    Abstract: A method for operating a water electrolyzer includes applying a voltage to a water electrolysis cell such that a current having a target current value flows through the water electrolysis cell and stopping the current that flows through the water electrolysis cell upon a voltage applied to the water electrolysis cell being increased to a predetermined threshold value or more when a water electrolysis reaction is performed.
    Type: Application
    Filed: May 23, 2024
    Publication date: September 19, 2024
    Inventors: KOICHIRO ASAZAWA, HIDEAKI MURASE, KOICHI SAWADA, TAKAO HAYASHI
  • Publication number: 20240060198
    Abstract: A water electrolyzer includes an electrochemical cell including an anode and a cathode, an electrolyte solution, a heater, a voltage applicator, and a controller. The heater heats the electrolyte solution. The voltage applicator applies a voltage between the anode and the cathode. The electrochemical cell includes nickel. In startup of the water electrolyzer, the controller causes the heater to increase the temperature of the electrolyte solution by heating and causes the voltage applicator to start application of a voltage when the temperature of the electrolyte solution is less than a predetermined threshold value.
    Type: Application
    Filed: October 14, 2023
    Publication date: February 22, 2024
    Inventors: Hiroshi SHIRATAKI, Takao HAYASHI, Koichiro ASAZAWA, Hideaki MURASE
  • Publication number: 20240052505
    Abstract: A water electrolysis cell includes an anode, a cathode, and an anion-exchange membrane disposed between the anode and the cathode. The anode includes a catalyst layer disposed on the anion-exchange membrane and an anode gas diffusion layer disposed on the catalyst layer. The anode gas diffusion layer includes metal fiber. In the metal fiber, a section constituting a surface of the metal fiber is composed of nickel.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 15, 2024
    Inventors: KOICHIRO ASAZAWA, HIROSHI SHIRATAKI, HIDEAKI MURASE, TAKAO HAYASHI, KOICHI KOGA
  • Publication number: 20240044028
    Abstract: A water electrolyzer includes an electrochemical cell including an anode and a cathode, an electrolyte solution, a voltage applicator, and a controller. The voltage applicator applies a voltage between the anode and the cathode. The electrochemical cell includes nickel. In the shutdown of the water electrolyzer, the controller causes the voltage applicator to apply the voltage at least when the temperature of the electrolyte solution is equal to or more than a predetermined threshold value.
    Type: Application
    Filed: October 14, 2023
    Publication date: February 8, 2024
    Inventors: HIROSHI SHIRATAKI, TAKAO HAYASHI, HIDEAKI MURASE, KOICHIRO ASAZAWA
  • Patent number: 11173484
    Abstract: Provided are an anion exchange resin being capable of producing an electrolyte membrane, a binder for forming an electrode catalyst layer and a battery electrode catalyst layer, which have improved electrical properties and chemical properties. For example, used is an anion exchange resin which has a hydrophobic unit being composed of bisphenol AF residues repeated via carbon-carbon bond and a hydrophilic unit being composed of hydrophilic groups repeated via carbon-carbon bond, in which the hydrophilic group is formed by connecting an anion exchange group to a fluorene backbone via a divalent saturated hydrocarbon group, and in which the hydrophobic unit and the hydrophilic unit are connected via carbon-carbon bond.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: November 16, 2021
    Assignees: University Of Yamanashi, Takahata Precision Co., Ltd., DAIHATSU MOTOR CO., LTD
    Inventors: Kenji Miyatake, Junpei Miyake, Taro Kimura, Naoki Yokota, Katsuya Nagase, Yousuke Konno, Koichiro Asazawa, Aoi Takano, Takeshi Kato
  • Patent number: 11154852
    Abstract: Provided are an anion exchange resin being capable of producing an electrolyte membrane and the like, which have improved chemical properties (durability). For example, used is an anion exchange resin comprising a hydrophobic unit being composed of a plurality of divalent hydrophobic groups repeated via carbon-carbon bond, the divalent hydrophobic group having a plurality of aromatic rings which are connected to each other via a divalent fluorine-containing group; and a hydrophilic unit being composed of a plurality of hydrophilic groups repeated via carbon-carbon bond, the hydrophilic groups being composed of a plurality of aromatic rings which are connected to each other via a divalent hydrocarbon group and/or carbon-carbon bond, and the hydrophilic groups containing an anion exchange group-containing group including a quaternary ammonium salt having a piperidine ring, and wherein the hydrophobic unit and the hydrophilic unit are connected via carbon-carbon bond.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: October 26, 2021
    Assignees: UNIVERSITY OF YAMANASHI, TAKAHATA PRECISION CO., LTD., DAIHATSU MOTOR CO., LTD
    Inventors: Kenji Miyatake, Junpei Miyake, Naoki Yokota, Katsuya Nagase, Aoi Takano, Takeshi Kato, Koichiro Asazawa
  • Patent number: 10947339
    Abstract: Provided are an anion exchange resin being capable of producing an electrolyte membrane for a fuel cell, a binder for forming an electrode catalyst layer and a fuel cell electrode catalyst layer, which have an improved physical property (anion conductivity); a method for producing thereof; an electrolyte membrane for a fuel cell, a binder for forming an electrode catalyst layer and a fuel cell electrode catalyst layer produced from the anion exchange resin; and a fuel cell having the electrolyte membrane or the electrode catalyst layer.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: March 16, 2021
    Assignees: UNIVERSITY OF YAMANASHI, TAKAHATA PRECISION CO., LTD.
    Inventors: Kenji Miyatake, Junpei Miyake, Hideaki Ono, Manai Shimada, Naoki Yokota, Natsumi Yoshimura, Koichiro Asazawa, Eriko Nishino
  • Patent number: 10734663
    Abstract: An anion exchange resin capable of producing an electrolyte membrane, a binder for forming an electrode catalyst layer and a fuel cell electrode catalyst layer, which have improved chemical properties and mechanical properties; an electrolyte membrane and a binder for forming an electrode catalyst layer produced from the anion exchange resin; and a fuel cell having the electrolyte membrane or the electrode catalyst layer.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: August 4, 2020
    Assignees: UNIVERSITY OF YAMANASHI, TAKAHATA PRECISION CO., LTD.
    Inventors: Kenji Miyatake, Junpei Miyake, Hideaki Ono, Manai Shimada, Naoki Yokota, Natsumi Yoshimura, Aoi Takano, Koichiro Asazawa, Eriko Nishino, Yui Kuwabara
  • Patent number: 10727515
    Abstract: An anion exchange resin capable of producing an electrolyte membrane, a binder for forming an electrode catalyst layer and a fuel cell electrode catalyst layer, which have improved electrical properties; an electrolyte membrane and a binder for forming an electrode catalyst layer produced from the anion exchange resin; and a fuel cell having the electrolyte membrane or the electrode catalyst layer.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: July 28, 2020
    Assignees: UNIVERSITY OF YAMANASHI, TAKAHATA PRECISION CO., LTD.
    Inventors: Kenji Miyatake, Junpei Miyake, Hideaki Ono, Manai Shimada, Naoki Yokota, Natsumi Yoshimura, Aoi Takano, Koichiro Asazawa, Eriko Nishino, Yui Kuwabara
  • Publication number: 20200230590
    Abstract: Provided are an anion exchange resin being capable of producing an electrolyte membrane, a binder for forming an electrode catalyst layer and a battery electrode catalyst layer, which have improved electrical properties and chemical properties. For example, used is an anion exchange resin which has a hydrophobic unit being composed of bisphenol AF residues repeated via carbon-carbon bond and a hydrophilic unit being composed of hydrophilic groups repeated via carbon-carbon bond, in which the hydrophilic group is formed by connecting an anion exchange group to a fluorene backbone via a divalent saturated hydrocarbon group, and in which the hydrophobic unit and the hydrophilic unit are connected via carbon-carbon bond.
    Type: Application
    Filed: November 20, 2019
    Publication date: July 23, 2020
    Applicants: University Of Yamanashi, Takahata Precision Co., Ltd.
    Inventors: Kenji MIYATAKE, Junpei Miyake, Taro Kimura, Naoki Yokota, Katsuya Nagase, Yousuke Konno, Koichiro Asazawa, Aoi Takano, Takeshi Kato
  • Publication number: 20200061599
    Abstract: Provided are an anion exchange resin being capable of producing an electrolyte membrane and the like, which have improved chemical properties (durability). For example, used is an anion exchange resin comprising a hydrophobic unit being composed of a plurality of divalent hydrophobic groups repeated via carbon-carbon bond, the divalent hydrophobic group having a plurality of aromatic rings which are connected to each other via a divalent fluorine-containing group; and a hydrophilic unit being composed of a plurality of hydrophilic groups repeated via carbon-carbon bond, the hydrophilic groups being composed of a plurality of aromatic rings which are connected to each other via a divalent hydrocarbon group and/or carbon-carbon bond, and the hydrophilic groups containing an anion exchange group-containing group including a quaternary ammonium salt having a piperidine ring, and wherein the hydrophobic unit and the hydrophilic unit are connected via carbon-carbon bond.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 27, 2020
    Applicants: University Of Yamanashi, Takahata Precision Co., Ltd., Daihatsu Motor Co., Ltd.
    Inventors: Kenji MIYATAKE, Junpei Miyake, Naoki Yokota, Katsuya Nagase, Aoi Takano, Takeshi Kato, Koichiro Asazawa
  • Patent number: 10522843
    Abstract: A supported bi-metallic non-platinum catalyst that is capable of oxidizing hydrazine to produce, as by-products of energy production, nitrogen, water, and zero or near-zero levels of ammonia is described. The catalyst is suitable for use in fuel cells, particularly those that utilizes an anion-exchange membrane and a liquid fuel such as hydrazine.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: December 31, 2019
    Assignee: STC. UNM
    Inventors: Alexey Serov, Plamen B Atanassov, Tomokazu Sakamoto, Hirohisa Tanaka, Koichiro Asazawa
  • Patent number: 10287409
    Abstract: The present invention provides an anion exchange resin capable of producing an electrolyte membrane for a fuel cell, a binder for forming an electrode catalyst layer and a battery electrode catalyst layer. The anion exchange resin of the present invention has a hydrophobic unit, a hydrophilic unit and divalent fluorine-containing groups. The hydrophobic unit has divalent hydrophobic groups composed of one aromatic ring or a plurality of aromatic rings that are repeated via carbon-carbon bond. The hydrophilic unit has divalent hydrophilic groups composed of one aromatic ring or a plurality of aromatic rings, at least one of which has an anion exchange group, that are repeated via carbon-carbon bond. The divalent fluorine-containing groups have a specific structure and are bonded via carbon-carbon bond to the hydrophobic unit and/or the hydrophilic unit and/or a moiety other than these units.
    Type: Grant
    Filed: August 22, 2015
    Date of Patent: May 14, 2019
    Assignees: TAKAHATA PRECISION JAPAN CO., LTD., UNIVERSITY OF YAMANASHI
    Inventors: Manai Shimada, Naoki Yokota, Kenji Miyatake, Masahiro Watanabe, Junpei Miyake, Hideaki Ono, Eriko Nishino, Koichiro Asazawa
  • Publication number: 20190027767
    Abstract: An anion exchange resin capable of producing an electrolyte membrane, a binder for forming an electrode catalyst layer and a fuel cell electrode catalyst layer, which have improved chemical properties and mechanical properties; an electrolyte membrane and a binder for forming an electrode catalyst layer produced from the anion exchange resin; and a fuel cell having the electrolyte membrane or the electrode catalyst layer.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 24, 2019
    Applicants: UNIVERSITY OF YAMANASHI, TAKAHATA PRECISION JAPAN CO., LTD.
    Inventors: Kenji MIYATAKE, Junpei MIYAKE, Hideaki ONO, Manai SHIMADA, Naoki YOKOTA, Natsumi YOSHIMURA, Aoi TAKANO, Koichiro ASAZAWA, Eriko NISHINO, Yui KUWABARA
  • Publication number: 20190027768
    Abstract: An anion exchange resin capable of producing an electrolyte membrane, a binder for forming an electrode catalyst layer and a fuel cell electrode catalyst layer, which have improved electrical properties; an electrolyte membrane and a binder for forming an electrode catalyst layer produced from the anion exchange resin; and a fuel cell having the electrolyte membrane or the electrode catalyst layer.
    Type: Application
    Filed: July 24, 2018
    Publication date: January 24, 2019
    Applicants: UNIVERSITY OF YAMANASHI, TAKAHATA PRECISION JAPAN CO., LTD.
    Inventors: Kenji MIYATAKE, Junpei MIYAKE, Hideaki ONO, Manai SHIMADA, Naoki YOKOTA, Natsumi YOSHIMURA, Aoi TAKANO, Koichiro ASAZAWA, Eriko NISHINO, Yui KUWABARA
  • Publication number: 20180265626
    Abstract: Provided are an anion exchange resin being capable of producing an electrolyte membrane for a fuel cell, a binder for forming an electrode catalyst layer and a fuel cell electrode catalyst layer, which have an improved physical property (anion conductivity); a method for producing thereof; an electrolyte membrane for a fuel cell, a binder for forming an electrode catalyst layer and a fuel cell electrode catalyst layer produced from the anion exchange resin; and a fuel cell having the electrolyte membrane or the electrode catalyst layer.
    Type: Application
    Filed: September 20, 2016
    Publication date: September 20, 2018
    Applicants: University of Yamanashi, Takahata Precision Japan Co., Ltd.
    Inventors: Kenji MIYATAKE, Junpei MIYAKE, Hideaki ONO, Manai SHIMADA, Naoki YOKOTA, Natsumi YOSHIMURA, Koichiro ASAZAWA, Eriko NISHINO
  • Patent number: 9931624
    Abstract: An anion exchange resin having a hydrophobic unit with divalent hydrophobic groups bonded to each other via an ether bond, the divalent hydrophobic groups being composed of one aromatic ring, or being composed of a plurality of aromatic rings which are bonded to each other via a divalent hydrocarbon group, carbon-carbon bond or the like; and a hydrophilic unit having divalent hydrophilic groups bonded to each other via carbon-carbon bond, the divalent hydrophilic groups being composed of one aromatic ring, or being composed of a plurality of aromatic rings which are bonded to each other via a divalent hydrocarbon group or carbon-carbon bond, the aromatic ring or at least one of the aromatic rings having an anion exchange group are bonded via carbon-carbon bond.
    Type: Grant
    Filed: February 28, 2015
    Date of Patent: April 3, 2018
    Assignees: TAKAHATA PRECISION JAPAN CO., LTD., UNIVERSITY OF YAMANASHI
    Inventors: Naoki Yokota, Manai Shimada, Kenji Miyatake, Masahiro Watanabe, Junpei Miyake, Eriko Nishino, Koichiro Asazawa
  • Publication number: 20170267823
    Abstract: The present invention provides an anion exchange resin capable of producing an electrolyte membrane for a fuel cell, a binder for forming an electrode catalyst layer and a battery electrode catalyst layer. The anion exchange resin of the present invention has a hydrophobic unit, a hydrophilic unit and divalent fluorine-containing groups. The hydrophobic unit has divalent hydrophobic groups composed of one aromatic ring or a plurality of aromatic rings that are repeated via carbon-carbon bond. The hydrophilic unit has divalent hydrophilic groups composed of one aromatic ring or a plurality of aromatic rings, at least one of which has an anion exchange group, that are repeated via carbon-carbon bond. The divalent fluorine-containing groups have a specific structure and are bonded via carbon-carbon bond to the hydrophobic unit and/or the hydrophilic unit and/or a moiety other than these units.
    Type: Application
    Filed: August 22, 2015
    Publication date: September 21, 2017
    Applicants: TAKAHATA PRECISION JAPAN CO., LTD., UNIVERSITY OF YAMANASHI
    Inventors: Manai SHIMADA, Naoki YOKOTA, Kenji MIYATAKE, Masahiro WATANABE, Junpei MIYAKE, Hideaki ONO, Eriko NISHINO, Koichiro ASAZAWA
  • Publication number: 20170087545
    Abstract: An anion exchange resin having a hydrophobic unit with divalent hydrophobic groups bonded to each other via an ether bond, the divalent hydrophobic groups being composed of one aromatic ring, or being composed of a plurality of aromatic rings which are bonded to each other via a divalent hydrocarbon group, carbon-carbon bond or the like; and a hydrophilic unit having divalent hydrophilic groups bonded to each other via carbon-carbon bond, the divalent hydrophilic groups being composed of one aromatic ring, or being composed of a plurality of aromatic rings which are bonded to each other via a divalent hydrocarbon group or carbon-carbon bond, the aromatic ring or at least one of the aromatic rings having an anion exchange group are bonded via carbon-carbon bond.
    Type: Application
    Filed: February 28, 2015
    Publication date: March 30, 2017
    Applicants: TAKAHATA PRECISION JAPAN CO., LTD., UNIVERSITY OF YAMANASHI
    Inventors: Naoki YOKOTA, Manai SHIMADA, Kenji MIYATAKE, Masahiro WATANABE, Junpei MIYAKE, Eriko NISHINO, Koichiro ASAZAWA
  • Patent number: 9601784
    Abstract: A supported bi-metallic non-platinum catalyst that is capable of oxidizing hydrazine to produce, as by-products of energy production, nitrogen, water, and zero or near-zero levels of ammonia is described. The catalyst is suitable for use in fuel cells, particularly those that utilizes an anion-exchange membrane and a liquid fuel such as hydrazine.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: March 21, 2017
    Assignee: STC.UNM
    Inventors: Alexey Serov, Plamen B Atanassov, Tomokazu Skamoto, Hirohisa Tanaka, Koichiro Asazawa