Patents by Inventor Koji Taya

Koji Taya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070290320
    Abstract: A carrier for a stacked type semiconductor device includes a lower carrier having a first accommodating portion that accommodates a first semiconductor device, and an upper carrier having a second accommodating portion that accommodates a second semiconductor device stacked on the first semiconductor device so as to be placed in position on the first semiconductor device. It is thus possible to eliminate an additional device used for stacking the semiconductor device, and thereby reduce the cost.
    Type: Application
    Filed: August 22, 2007
    Publication date: December 20, 2007
    Inventors: Masanori Onodera, Junichi Kasai, Kouichi Meguro, Junji Tanaka, Yasuhiro Shinma, Koji Taya
  • Patent number: 7285848
    Abstract: A carrier for a stacked type semiconductor device includes a lower carrier having a first accommodating portion that accommodates a first semiconductor device, and an upper carrier having a second accommodating portion that accommodates a second semiconductor device stacked on the first semiconductor device so as to be placed in position on the first semiconductor device. It is thus possible to eliminate an additional device used for stacking the semiconductor device, and thereby reduce the cost.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: October 23, 2007
    Assignee: Spansion LLC
    Inventors: Masanori Onodera, Junichi Kasai, Kouichi Meguro, Junji Tanaka, Yasuhiro Shinma, Koji Taya
  • Publication number: 20070145579
    Abstract: The present invention provides a semiconductor device that includes: stacked semiconductor chips, each semiconductor chip including a semiconductor substrate and a first insulating layer that is provided on side faces of the semiconductor substrate and has concavities formed on side faces thereof; first metal layers that are provided in center portions of inner side faces of the concavities; and second metal layers that are provided in the concavities and are connected to the first metal layers formed on each semiconductor chip. The present invention also provides a method of manufacturing the semiconductor device.
    Type: Application
    Filed: December 7, 2006
    Publication date: June 28, 2007
    Inventors: Masataka Hoshino, Junichi Kasai, Kouichi Meguro, Ryota Fukuyama, Yasuhiro Shinma, Koji Taya, Masanori Onodera, Naomi Masuda
  • Publication number: 20060245908
    Abstract: A carrier for a stacked-type semiconductor device includes an accommodating section for accommodating stacked semiconductor devices, guide portions guiding the stacked semiconductor devices, and grooves through which a fluid may flow to the accommodating section and to sides of the stacked semiconductor devices. These grooves facilitate the flow of gas or liquid on the sides of the accommodating sections, and it is thus expected that the flow of hot wind during the reflow process and cleaning liquid during the cleaning process can be facilitated. This improves the production yield and the cleaning effects. Holes for connecting the accommodating section to the outside may be provided at corners of the accommodating section. Gas may be guided from the lower side of the accommodating section, so that heat can be efficiently applied to the semiconductor devices and bonding failures therebetween can be reduced.
    Type: Application
    Filed: January 27, 2006
    Publication date: November 2, 2006
    Inventors: Koji Taya, Kouichi Meguro, Junichi Kasai, Yasuhiro Shinma, Masanori Onodera, Junji Tanaka, Murugasan Achari
  • Publication number: 20060170090
    Abstract: A stacked type semiconductor device includes semiconductor devices, interposers by which the semiconductor devices are stacked, the interposers having electrodes provided on sides thereof, and a connection substrate connecting the electrodes together. The electrodes provided on the sides of the interposers may be connected to the connection substrate by one of an electrically conductive adhesive or an anisotropically conductive film.
    Type: Application
    Filed: January 25, 2006
    Publication date: August 3, 2006
    Inventors: Yasuhiro Shinma, Masanori Onodera, Kouichi Meguro, Koji Taya, Junji Tanaka, Junichi Kasai
  • Publication number: 20060043600
    Abstract: A carrier structure for fabricating a stacked-type semiconductor device includes: a lower carrier that has laminated thin plates and has first openings for mounting first semiconductor packages thereon; and an upper carrier having second openings for mounting second semiconductor packages on the first semiconductor packages. The lower carrier composed of the laminated thin plates realizes an even plate thickness and reduces warps because stress is distributed to the thin plates. This results in an improved production yield. A pattern of the openings in the thin plates of the lower carrier may be formed by etching or electric discharging. The openings thus formed have reduced warps and burrs.
    Type: Application
    Filed: August 30, 2005
    Publication date: March 2, 2006
    Inventors: Masanori Onodera, Kouichi Meguro, Junichi Kasai, Yasuhiro Shinma, Koji Taya, Junji Tanaka
  • Publication number: 20050269682
    Abstract: A carrier for a stacked type semiconductor device includes a lower carrier having a first accommodating portion that accommodates a first semiconductor device, and an upper carrier having a second accommodating portion that accommodates a second semiconductor device stacked on the first semiconductor device so as to be placed in position on the first semiconductor device. It is thus possible to eliminate an additional device used for stacking the semiconductor device, and thereby reduce the cost.
    Type: Application
    Filed: May 11, 2005
    Publication date: December 8, 2005
    Inventors: Masanori Onodera, Junichi Kasai, Kouichi Meguro, Junji Tanaka, Yasuhiro Shinma, Koji Taya