Patents by Inventor Konami Izumi

Konami Izumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230221390
    Abstract: A resonance circuit includes: an inductor formed along a surface of a first cylindrical form having a central axis; and a capacitor formed along a surface of a second cylindrical form having the central axis, wherein the inductor and the capacitor are electrically connected to each other to form a closed loop.
    Type: Application
    Filed: December 22, 2022
    Publication date: July 13, 2023
    Inventors: Konami IZUMI, Yutaka FUJII, Yu SUZUKI
  • Patent number: 10821506
    Abstract: A method for producing a silver nanoparticle dispersion according to the present invention includes the steps of mixing an amine compound, a resin, and a silver salt to yield a complex compound; and heating and decomposing the complex compound to form silver nanoparticles. A silver nanoparticle ink can be obtained by adding an organic solvent to the silver nanoparticle dispersion obtained by this method. The resin includes, for example, a polymer exhibiting viscosity at a temperature within the range of 20° C. to 50° C. or a high molecular weight compound exhibiting viscosity at a temperature within the range of 20° C. to 50° C.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: November 3, 2020
    Assignee: NATIONAL UNIVERSITY CORPORATION YAMAGATA UNIVERSITY
    Inventors: Konami Izumi, Daisuke Kumaki, Shizuo Tokito, Daisuke Shiokawa
  • Patent number: 10396447
    Abstract: The invention provides a wireless chip which can secure the safety of consumers while being small in size, favorable in communication property, and inexpensive, and the invention also provides an application thereof. Further, the invention provides a wireless chip which can be recycled after being used for managing the manufacture, circulation, and retail. A wireless chip includes a layer including a semiconductor element, and an antenna. The antenna includes a first conductive layer, a second conductive layer, and a dielectric layer sandwiched between the first conductive layer and the second conductive layer, and has a spherical shape, an ovoid shape, an oval spherical shape like a go stone, an oval spherical shape like a rugby ball, or a disc shape, or has a cylindrical shape or a polygonal prism shape in which an outer edge portion thereof has a curved surface.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: August 27, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Konami Izumi
  • Patent number: 10168801
    Abstract: To provide a small and light-weight writing instrument that can accurately read information written down on a display portion as electronic information. A pen-shaped device which includes a battery capable of being charged wirelessly from the outside, a first sensor which detects whether a pen nib has contact with a surface, a second sensor which detects movement of the pen nib in contact with the surface, a control circuit which is electrically connected to the first sensor and the second sensor, and a memory which is electrically connected to the control circuit, where the first sensor, the second sensor, the control circuit, and the memory operate by supply of electric power from the battery.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: January 1, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takeshi Osada, Mayumi Yamaguchi, Konami Izumi
  • Publication number: 20180354031
    Abstract: A method for producing a silver nanoparticle dispersion according to the present invention includes the steps of mixing an amine compound, a resin, and a silver salt to yield a complex compound; and heating and decomposing the complex compound to form silver nanoparticles. A silver nanoparticle ink can be obtained by adding an organic solvent to the silver nanoparticle dispersion obtained by this method. The resin includes, for example, a polymer exhibiting viscosity at a temperature within the range of 20° C. to 50° C. or a high molecular weight compound exhibiting viscosity at a temperature within the range of 20° C. to 50° C.
    Type: Application
    Filed: May 20, 2016
    Publication date: December 13, 2018
    Inventors: Konami IZUMI, Daisuke KUMAKI, Shizuo TOKITO, Daisuke SHIOKAWA
  • Patent number: 10035388
    Abstract: The present invention provides a MEMS and a sensor having the MEMS which can be formed without a process of etching a sacrifice layer. The MEMS and the sensor having the MEMS are formed by forming an interspace using a spacer layer. In the MEMS in which an interspace is formed using a spacer layer, a process for forming a sacrifice layer and an etching process of the sacrifice layer are not required. As a result, there is no restriction on the etching time, and thus the yield can be improved.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: July 31, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Konami Izumi, Fuminori Tateishi
  • Publication number: 20180096240
    Abstract: The invention provides a wireless chip which can secure the safety of consumers while being small in size, favorable in communication property, and inexpensive, and the invention also provides an application thereof. Further, the invention provides a wireless chip which can be recycled after being used for managing the manufacture, circulation, and retail. A wireless chip includes a layer including a semiconductor element, and an antenna. The antenna includes a first conductive layer, a second conductive layer, and a dielectric layer sandwiched between the first conductive layer and the second conductive layer, and has a spherical shape, an ovoid shape, an oval spherical shape like a go stone, an oval spherical shape like a rugby ball, or a disc shape, or has a cylindrical shape or a polygonal prism shape in which an outer edge portion thereof has a curved surface.
    Type: Application
    Filed: September 14, 2017
    Publication date: April 5, 2018
    Inventors: Shunpei YAMAZAKI, Konami IZUMI
  • Patent number: 9874979
    Abstract: To provide a touch panel with reduced disturbance of display and with improved mechanical strength by suppressing variation in the space between a pair of substrates which form the touch panel even when in contact with an object to be detected. A pixel portion including a plurality of pixels is provided between a pair of substrates. Each pixel includes a photosensor portion which detects that the object to be detected is in contact with one of the pair of substrates, and a MEMS portion which generates a mechanical displacement in a direction perpendicular to the pair of substrates when a signal based on a detection result of the photosensor portion is input.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: January 23, 2018
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiyuki Kurokawa, Konami Izumi
  • Patent number: 9767406
    Abstract: The invention provides a wireless chip which can secure the safety of consumers while being small in size, favorable in communication property, and inexpensive, and the invention also provides an application thereof. Further, the invention provides a wireless chip which can be recycled after being used for managing the manufacture, circulation, and retail. A wireless chip includes a layer including a semiconductor element, and an antenna. The antenna includes a first conductive layer, a second conductive layer, and a dielectric layer sandwiched between the first conductive layer and the second conductive layer, and has a spherical shape, an ovoid shape, an oval spherical shape like a go stone, an oval spherical shape like a rugby ball, or a disc shape, or has a cylindrical shape or a polygonal prism shape in which an outer edge portion thereof has a curved surface.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: September 19, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Konami Izumi
  • Publication number: 20170182853
    Abstract: The present invention provides a MEMS and a sensor having the MEMS which can be formed without a process of etching a sacrifice layer. The MEMS and the sensor having the MEMS are formed by forming an interspace using a spacer layer. In the MEMS in which an interspace is formed using a spacer layer, a process for forming a sacrifice layer and an etching process of the sacrifice layer are not required. As a result, there is no restriction on the etching time, and thus the yield can be improved.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Inventors: Mayumi YAMAGUCHI, Konami IZUMI, Fuminori TATEISHI
  • Patent number: 9626618
    Abstract: The invention provides a wireless chip which can secure the safety of consumers while being small in size, favorable in communication property, and inexpensive, and the invention also provides an application thereof. Further, the invention provides a wireless chip which can be recycled after being used for managing the manufacture, circulation, and retail. A wireless chip includes a layer including a semiconductor element, and an antenna. The antenna includes a first conductive layer, a second conductive layer, and a dielectric layer sandwiched between the first conductive layer and the second conductive layer, and has a spherical shape, an ovoid shape, an oval spherical shape like a go stone, an oval spherical shape like a rugby ball, or a disc shape, or has a cylindrical shape or a polygonal prism shape in which an outer edge portion thereof has a curved surface.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: April 18, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Konami Izumi
  • Patent number: 9597933
    Abstract: The present invention provides a MEMS and a sensor having the MEMS which can be formed without a process of etching a sacrifice layer. The MEMS and the sensor having the MEMS are formed by forming an interspace using a spacer layer. In the MEMS in which an interspace is formed using a spacer layer, a process for forming a sacrifice layer and an etching process of the sacrifice layer are not required. As a result, there is no restriction on the etching time, and thus the yield can be improved.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: March 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Konami Izumi, Fuminori Tateishi
  • Patent number: 9590277
    Abstract: A power storage device having a small thickness is manufactured. A manufacturing method of the power storage device includes: forming a first layer and a second layer over a first substrate; forming a first insulating layer, a positive electrode and a negative electrode over the second layer; forming a solid electrolyte layer over the first insulating layer, the positive electrode, and the negative electrode; forming a sealing layer to cover the solid electrolyte layer; forming a planarization film and a support over the sealing layer; separating the first layer and the second layer from each other so that the second layer, the positive electrode, the negative electrode, the solid electrolyte layer, the sealing layer, the planarization film, and the support are separated from the first substrate; attaching the separated structure to a second substrate which is flexible; and separating the support from the planarization film.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: March 7, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Konami Izumi
  • Publication number: 20160329604
    Abstract: A power storage device having a small thickness is manufactured. A manufacturing method of the power storage device includes: forming a first layer and a second layer over a first substrate; forming a first insulating layer, a positive electrode and a negative electrode over the second layer; forming a solid electrolyte layer over the first insulating layer, the positive electrode, and the negative electrode; forming a sealing layer to cover the solid electrolyte layer; forming a planarization film and a support over the sealing layer; separating the first layer and the second layer from each other so that the second layer, the positive electrode, the negative electrode, the solid electrolyte layer, the sealing layer, the planarization film, and the support are separated from the first substrate; attaching the separated structure to a second substrate which is flexible; and separating the support from the planarization film.
    Type: Application
    Filed: July 20, 2016
    Publication date: November 10, 2016
    Inventor: Konami IZUMI
  • Patent number: 9487390
    Abstract: A semiconductor element of the electric circuit includes a semiconductor layer over a gate electrode. The semiconductor layer of the semiconductor element is formed of a layer including polycrystalline silicon which is obtained by crystallizing amorphous silicon by heat treatment or laser irradiation, over a substrate. The obtained layer including polycrystalline silicon is also used for a structure layer such as a movable electrode of a structure body. Therefore, the structure body and the electric circuit for controlling the structure body can be formed over one substrate. As a result, a micromachine can be miniaturized. Further, assembly and packaging are unnecessary, so that manufacturing cost can be reduced.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: November 8, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Yamaguchi, Konami Izumi
  • Publication number: 20160259485
    Abstract: To provide a touch panel with reduced disturbance of display and with improved mechanical strength by suppressing variation in the space between a pair of substrates which form the touch panel even when in contact with an object to be detected. A pixel portion including a plurality of pixels is provided between a pair of substrates. Each pixel includes a photosensor portion which detects that the object to be detected is in contact with one of the pair of substrates, and a MEMS portion which generates a mechanical displacement in a direction perpendicular to the pair of substrates when a signal based on a detection result of the photosensor portion is input.
    Type: Application
    Filed: May 19, 2016
    Publication date: September 8, 2016
    Inventors: Yoshiyuki KUROKAWA, Konami IZUMI
  • Publication number: 20160224883
    Abstract: The invention provides a wireless chip which can secure the safety of consumers while being small in size, favorable in communication property, and inexpensive, and the invention also provides an application thereof. Further, the invention provides a wireless chip which can be recycled after being used for managing the manufacture, circulation, and retail. A wireless chip includes a layer including a semiconductor element, and an antenna. The antenna includes a first conductive layer, a second conductive layer, and a dielectric layer sandwiched between the first conductive layer and the second conductive layer, and has a spherical shape, an ovoid shape, an oval spherical shape like a go stone, an oval spherical shape like a rugby ball, or a disc shape, or has a cylindrical shape or a polygonal prism shape in which an outer edge portion thereof has a curved surface.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventors: Shunpei YAMAZAKI, Konami IZUMI
  • Patent number: 9406978
    Abstract: The present invention relates to a power storage device including: a positive electrode having a positive-electrode current collector, a positive-electrode active material with a plurality of first projections on the positive-electrode current collector, and a first insulator on an end of each of the plurality of first projections; a negative electrode having a negative-electrode current collector, a negative-electrode active material with a plurality of second projections on a surface of the negative-electrode current collector, and a second insulator on an end of each of the plurality of second projections; a separator between the positive electrode and the negative electrode; and an electrolyte provided in a space between the positive electrode and the negative electrode and containing carrier ions. In each of the first projections and the second projections, a ratio of the height to the width is 3 or more and 1000 or less to 1, i.e. (3 to 1000):1.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: August 2, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Konami Izumi
  • Patent number: 9401525
    Abstract: A power storage device having a small thickness is manufactured. A manufacturing method of the power storage device includes: forming a first layer and a second layer over a first substrate; forming a first insulating layer, a positive electrode and a negative electrode over the second layer; forming a solid electrolyte layer over the first insulating layer, the positive electrode, and the negative electrode; forming a sealing layer to cover the solid electrolyte layer; forming a planarization film and a support over the sealing layer; separating the first layer and the second layer from each other so that the second layer, the positive electrode, the negative electrode, the solid electrolyte layer, the sealing layer, the planarization film, and the support are separated from the first substrate; attaching the separated structure to a second substrate which is flexible; and separating the support from the planarization film.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: July 26, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Konami Izumi
  • Patent number: 9389720
    Abstract: To provide a touch panel with reduced disturbance of display and with improved mechanical strength by suppressing variation in the space between a pair of substrates which form the touch panel even when in contact with an object to be detected. A pixel portion including a plurality of pixels is provided between a pair of substrates. Each pixel includes a photosensor portion which detects that the object to be detected is in contact with one of the pair of substrates, and a MEMS portion which generates a mechanical displacement in a direction perpendicular to the pair of substrates when a signal based on a detection result of the photosensor portion is input.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: July 12, 2016
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshiyuki Kurokawa, Konami Izumi