Patents by Inventor Konstantin Bourdelle

Konstantin Bourdelle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060110899
    Abstract: Improved fabrication processes for manufacturing GeOI type wafers are disclosed. In an implementation, a method for fabricating a germanium on insulator wafer includes providing a source substrate having a surface, at least a layer of germanium and a weakened area. The weakened area is located at a predetermined depth in the germanium layer of the source substrate and is generally parallel to the source substrate surface. The technique also includes providing a germanium oxynitride layer in or on the source substrate, bonding the source substrate surface to a handle substrate to form a source-handle structure, and detaching the source substrate from the source-handle structure at the weakened area of the source substrate to create the germanium on insulator wafer having, as a surface, a useful layer of germanium.
    Type: Application
    Filed: January 4, 2005
    Publication date: May 25, 2006
    Inventors: Konstantin Bourdelle, Fabrice Letertre, Bruce Faure, Christophe Morales, Chrystel Deguet
  • Publication number: 20060099779
    Abstract: The present invention relates to a method for transferring a thin useful layer from a donor substrate having an ordered crystalline structure to a receiver substrate. The method includes creation of a weakened zone in the donor substrate to define the layer to be transferred from the donor substrate. The crystalline structure of a surface region of the donor substrate is disturbed so as to create a disturbed superficial region within the thickness of the donor substrate, and thus define a disturbance interface between the disturbed superficial region and a subjacent region of the donor substrate for which the crystalline structure remains unchanged. Next, the donor substrate is subjected to a recrystallization annealing in order to at least partial recrystallize of the disturbed region, starting from the crystalline structure of the subjacent region of the donor substrate, and to create a zone of crystalline defects in the plane of the disturbance interface.
    Type: Application
    Filed: December 16, 2005
    Publication date: May 11, 2006
    Inventors: Ian Cayrefourcq, Carlos Mazure, Konstantin Bourdelle
  • Publication number: 20060014363
    Abstract: A method for forming a structure that includes a layer that is removed from a donor wafer that has a first layer made of a semiconductor material containing germanium. The method includes the steps of forming a weakness zone in the thickness of the first layer; bonding the donor wafer to a host wafer; and supplying energy so as to weaken the donor wafer at the level of the zone of weakness. The zone of weakness is formed by subjecting the donor wafer to a co-implantation of at least two different atomic species, while the bonding is carried out by performing a thermal treatment at a temperature between 300° C. and 400° C. for a duration of from 30 minutes to four hours.
    Type: Application
    Filed: September 21, 2005
    Publication date: January 19, 2006
    Inventors: Nicolas Daval, Takeshi Akatsu, Nguyet-Phuong Nguyen, Olivier Rayssac, Konstantin Bourdelle
  • Publication number: 20050245049
    Abstract: Methods for forming a semiconductor structure are described. In an embodiment, the technique includes providing a donor wafer having a first semiconductor layer and a second semiconductor layer on the first layer and having a free surface; coimplanting two different atomic species through the free surface of the second layer to form a zone of weakness zone in the first layer; bonding the free surface of the second layer to a host wafer; and supplying energy to detach at the zone of weakness a semiconductor structure comprising the host wafer, the second layer and a portion of the first layer.
    Type: Application
    Filed: July 11, 2005
    Publication date: November 3, 2005
    Inventors: Takeshi Akatsu, Nicolas Daval, Nguyet-Phuong Nguyen, Olivier Rayssac, Konstantin Bourdelle
  • Publication number: 20050188915
    Abstract: The present invention relates to a method of manufacturing a wafer comprising a single crystalline bulk substrate of a first material and at least one epitaxial layer of a second material which has a lattice different from the lattice of the first material. The present invention provides a method for manufacturing a wafer in which a layer which is lattice-mismatched with the substrate can be grown on the substrate with a high effectiveness and high quality at a low cost. A roughening step is included for roughening the surface of the bulk substrate and a growing step is included for growing the second material on the rough surface with a reduced number of threading dislocations and an enhanced strain relaxation compared to a second material that is epitaxially grown on a polished surface.
    Type: Application
    Filed: August 11, 2004
    Publication date: September 1, 2005
    Inventors: Konstantin Bourdelle, Ian Cayrefourcq, Kennard Mark