Patents by Inventor Koon Wing Tsang

Koon Wing Tsang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120019149
    Abstract: A proximity sensor, a control method thereof and an electronic apparatus equipped with the proximity sensor are disclosed. The proximity sensor connected to a light-emitting module includes a light source, a light receiver and a control module. The light source emits lights at predetermined time intervals. The light receiver receives reflected lights of the emitted lights that are reflected from an object. The control module determines whether an average value of intensity values of the reflected lights is larger than a threshold value. If yes, the control module further determines whether a difference between a highest and a lowest intensity value of the reflected lights falls in a preset range. If yes, the control module would control the light-emitting module to change to a different light mode thereof. When a user reacts to the different light mode, the system will be able to tell whether a real user is present.
    Type: Application
    Filed: September 9, 2010
    Publication date: January 26, 2012
    Applicant: CAPELLA MICROSYSTEMS, CORP.
    Inventors: Cheng-Chung Shih, Yao-Tsung Tsai, Koon-Wing Tsang
  • Publication number: 20120012966
    Abstract: The present invention discloses a multi-cavity optical sensing and thermopile infrared sensing system, which comprises an optical sensing part, a dielectric layer, a plurality of optical cavities, and a plurality of thermocouples. The dielectric layer covers on the top of the optical sensing part. The optical cavities are formed by a plurality of metal reflectors inside the dielectric layer. The thermocouples are laterally disposed near the bottom of the dielectric layer. In addition, a low temperature region is formed in an area which is the overlapping of vertical projections of such thermocouples and the optical sensing part; a high temperature region is formed by the overlapping of vertical projections of such thermocouples, but without the overlaying which belongs to the vertical projection of the optical sensing part. Therefore, the system can sense the ambient light brightness, color conditions and human blackbody infrared signals within the range of 8-12 micrometers wavelength.
    Type: Application
    Filed: March 14, 2011
    Publication date: January 19, 2012
    Applicant: CAPELLA MICROSYSTEMS CORP.
    Inventors: KOON-WING TSANG, Cheng-Chung Shih
  • Patent number: 8084728
    Abstract: The present invention discloses an optical sensing device with multiple photodiode elements and multi-cavity Fabry-Perot ambient light filter structure to detect and convert light signal with different wavelength spectrum into electrical signal. In embodiment, the optical sensing device capable of sensing color information of ambient light or sunlight and provides blocking of infrared (IR) light within the wavelength ranging from 700 nm to 1100 nm. Preferably, the optical sensing device senses not just the ambient light brightness but also the fundamental red, green and blue color components of the ambient light.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: December 27, 2011
    Assignee: Capella Microsystems, Corp.
    Inventor: Koon-Wing Tsang
  • Publication number: 20110226952
    Abstract: A reflection sensing system comprises a body, an illuming module and a detecting module. The body is made by low temperature co-fired ceramic (LTCC) technology or other plasticity colloids and disposed a plurality of electronic connecting points. The illuming module includes a first accommodating space and a light emitted diode (LED), and the detecting module includes a light detector. The first accommodating space is disposed on the body and having a first open at one side. The cross-section of the first accommodating space is parabolic. The LED is disposed at the site of the focus of the first accommodating space, connected to the electronic connecting points and facing to the first open. The light detector is disposed on the body, connected to the electronic connecting points and providing sensing signals after receiving light.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 22, 2011
    Applicant: Capella Microsystems, Corp.
    Inventors: Cheng-Chung Shih, Yuh-Min Lin, Koon-Wing Tsang
  • Publication number: 20090237423
    Abstract: This invention discloses a display apparatus capable of adjusting gamma and brightness based on ambient light and its display adjustment method. The display apparatus is adjusted to display an image output signal based on an image input signal and the correlated color temperature and brightness of an ambient light. The display apparatus includes a plurality of light sensing circuits, a memory unit, an image processing module, and a display module. The light sensing circuit senses the ambient light to produce a digital ambient color temperature index value. The memory unit stores a lookup table of brightness expression rates and gamma adjustment parameters corresponding to different color temperature index values. The image processing module produces a gamma adjustment parameter by a lookup table based on the color temperature index value and generates the gamma expression rate of the image input signal.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 24, 2009
    Inventors: Cheng-Chung Shih, Koon Wing Tsang
  • Publication number: 20090159785
    Abstract: The present invention discloses an optical sensing device with multiple photodiode elements and multi-cavity Fabry-Perot ambient light filter structure to detect and convert light signal with different wavelength spectrum into electrical signal. In embodiment, the optical sensing device capable of sensing color information of ambient light or sunlight and provides blocking of infrared (IR) light within the wavelength ranging from 700 nm to 1100 nm. Preferably, the optical sensing device senses not just the ambient light brightness but also the fundamental red, green and blue color components of the ambient light.
    Type: Application
    Filed: February 27, 2009
    Publication date: June 25, 2009
    Inventor: Koon-Wing Tsang
  • Patent number: 7521666
    Abstract: The present invention provides a multi-cavity Fabry-Perot ambient light filter apparatus. The multi-cavity Fabry-Perot ambient light filter apparatus comprises a plurality of Fabry-Perot cavities, each of the plurality of Fabry-Perot cavities covering one of a plurality of photodiodes; wherein each of the plurality of Fabry-Perot cavities has two partially reflective layers and one interferometric layer sandwiching between the two partially reflective layers, and shares one of the two partially reflective layers with a neighboring Fabry-Perot cavity and thereby stair stacking with the neighboring Fabry-Perot cavity. The plurality of Fabry-Perot cavities are capable of blocking the ambient light except for a wavelength spectrum that is recognizable for human eyes, thereby effectively accomplishes excellent IR blocking from non-visible light spectra.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: April 21, 2009
    Assignee: Capella Microsystems Inc.
    Inventor: Koon Wing Tsang
  • Patent number: 7460009
    Abstract: A light source of testing a sensor, a test apparatus and a method are disclosed. The test apparatus includes a light source, a photo-mask and a sensor bearing area. The light source includes a plurality of light emitting diodes with parallel connection for emitting a test light. The light source is disposed in a photo-mask. The photo-mask has a diffuser interface. The test light is then diffused to the outside of the photo-mask through the diffuser interface. The sensor bearing area is for bearing the sensor. The sensor bearing area is disposed at the outside of the photo-mask and locates at a position to enable the test light to reach. Therefore, the test light emitted by the light source is used to test the sensor.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: December 2, 2008
    Assignee: Capella Microsystems Corp.
    Inventors: Koon Wing Tsang, Chih-Cheng Chien
  • Publication number: 20070208525
    Abstract: A light source of testing a sensor, a test apparatus and a method are disclosed. The test apparatus includes a light source, a photo-mask and a sensor bearing area. The light source includes a plurality of light emitting diodes with parallel connection for emitting a test light. The light source is disposed in a photo-mask. The photo-mask has a diffuser interface. The test light is then diffused to the outside of the photo-mask through the diffuser interface. The sensor bearing area is for bearing the sensor. The sensor bearing area is disposed at the outside of the photo-mask and locates at a position to enable the test light to reach. Therefore, the test light emitted by the light source is used to test the sensor.
    Type: Application
    Filed: July 11, 2006
    Publication date: September 6, 2007
    Inventors: Koon-Wing Tsang, Chih-Cheng Chien
  • Patent number: 6887735
    Abstract: An anti-reflective coating having a composite layer of silicon nitride and silicon dioxide may be formed over the entire photosensitive region of the photodetector to minimize the amount of reflection. The composite layer comprises a silicon nitride layer and a dielectric layer contiguous to the silicon nitride layer. The anti-reflective coating may be formed in a CMOS process for fabricating the PN junction in the photodiode and CMOS devices for amplifying the photodetector signal, where the polysilicon gate layer is used as a etch stop. The P+ or N+ material in the PN junction of the photodiode has a distributed design where two portions of the region are separated by a distance in the range of Xd to 2Xd, where Xd is the one-sided junction depletion width, to enhance the electric field and to reduce the distance traveled by the carriers for enhancing bandwidth. A heavily doped region of the opposite type may be added between the two portions to further enhance the electric field.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: May 3, 2005
    Assignee: Capella Microsystems, Inc.
    Inventor: Koon Wing Tsang
  • Patent number: 6838654
    Abstract: A first device comprising a first current mirror is used to amplify the output of a first photodetector. A second device comprising a current mirror arrangement is employed to amplify the output of a second photodetector. The outputs of the two devices are then compared to provide a signal useful for many applications, including that for determining the position of a rotating member or of a member in relative motion to another member. Preferably, no feedback action is used for the amplification of the output of at least one of the photodetectors.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: January 4, 2005
    Assignee: Capella Microsystems, Inc.
    Inventors: Brian N. Kuo, Ing-Jye Lan, Koon Wing Tsang, Pei-Ling Hsu
  • Publication number: 20040014254
    Abstract: An anti-reflective coating having a composite layer of silicon nitride and silicon dioxide may be formed over the entire photosensitive region of the photodetector to minimize the amount of reflection. The composite layer comprises a silicon nitride layer and a dielectric layer contiguous to the silicon nitride layer. The anti-reflective coating may be formed in a CMOS process for fabricating the PN junction in the photodiode and CMOS devices for amplifying the photodetector signal, where the polysilicon gate layer is used as a etch stop. The P+ or N+ material in the PN junction of the photodiode has a distributed design where two portions of the region are separated by a distance in the range of Xd to 2Xd, where Xd is the one-sided junction depletion width, to enhance the electric field and to reduce the distance traveled by the carriers for enhancing bandwidth. A heavily doped region of the opposite type may be added between the two portions to further enhance the electric field.
    Type: Application
    Filed: February 24, 2003
    Publication date: January 22, 2004
    Applicant: Capella Microsystems,Inc.
    Inventor: Koon Wing Tsang
  • Publication number: 20030189164
    Abstract: A first device comprising a first current mirror is used to amplify the output of a first photodetector. A second device comprising a current mirror arrangement is employed to amplify the output of a second photodetector. The outputs of the two devices are then compared to provide a signal useful for many applications, including that for determining the position of a rotating member or of a member in relative motion to another member. Preferably, no feedback action is used for the amplification of the output of at least one of the photodetectors.
    Type: Application
    Filed: January 17, 2002
    Publication date: October 9, 2003
    Applicant: CAPELLA MICROSYSTEMS, INC.
    Inventors: Brian N. Kuo, Ing-Jye Lan, Koon Wing Tsang, Pei-Ling Hsu
  • Patent number: 6555410
    Abstract: An anti-reflective coating having a composite layer of silicon nitride and silicon dioxide may be formed over the entire photosensitive region of the photodetector to minimize the amount of reflection. The composite layer comprises a silicon nitride layer and a dielectric layer contiguous to the silicon nitride layer. The anti-reflective coating may be formed in a CMOS process for fabricating the PN junction in the photodiode and CMOS devices for amplifying the photodetector signal, where the polysilicon gate layer is used as a etch stop. The P+ or N+ material in the PN junction of the photodiode has a distributed design where two portions of the region are separated by a distance in the range of Xd to 2Xd, where Xd is the one-sided junction depletion width, to enhance the electric field and to reduce the distance traveled by the carriers for enhancing bandwidth. A heavily doped region of the opposite type may be added between the two portions to further enhance the electric field.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: April 29, 2003
    Assignee: Capella Microsystems, Inc.
    Inventor: Koon Wing Tsang
  • Patent number: 6437311
    Abstract: An anti-reflective coating having a composite layer of silicon nitride and silicon dioxide may be formed over the entire photosensitive region of the photodetector to minimize the amount of reflection. The composite layer comprises a silicon nitride layer and a dielectric layer contiguous to the silicon nitride layer. The anti-reflective coating may be formed in a CMOS process for fabricating the PN junction in the photodiode and CMOS devices for amplifying the photodetector signal, where the polysilicon gate layer is used as a etch stop. The P+ or N+ material in the PN junction of the photodiode has a distributed design where two portions of the region are separated by a distance in the range of Xd to 2Xd, where Xd is the one-sided junction depletion width, to enhance the electric field and to reduce the distance traveled by the carriers for enhancing bandwidth. A heavily doped region of the opposite type may be added between the two portions to further enhance the electric field.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: August 20, 2002
    Assignee: Capella Microsystems, Inc.
    Inventor: Koon Wing Tsang
  • Publication number: 20010011737
    Abstract: An anti-reflective coating having a composite layer of silicon nitride and silicon dioxide may be formed over the entire photosensitive region of the photodetector to minimize the amount of reflection. The composite layer comprises a silicon nitride layer and a dielectric layer contiguous to the silicon nitride layer. The anti-reflective coating may be formed in a CMOS process for fabricating the PN junction in the photodiode and CMOS devices for amplifying the photodetector signal, where the polysilicon gate layer is used as a etch stop. The P+ or N+ material in the PN junction of the photodiode has a distributed design where two portions of the region are separated by a distance in the range of Xd to 2Xd, where Xd is the one-sided junction depletion width, to enhance the electric field and to reduce the distance traveled by the carriers for enhancing bandwidth. A heavily doped region of the opposite type may be added between the two portions to further enhance the electric field.
    Type: Application
    Filed: March 2, 2001
    Publication date: August 9, 2001
    Inventor: Koon Wing Tsang
  • Publication number: 20010010943
    Abstract: An anti-reflective coating having a composite layer of silicon nitride and silicon dioxide may be formed over the entire photosensitive region of the photodetector to minimize the amount of reflection. The composite layer comprises a silicon nitride layer and a dielectric layer contiguous to the silicon nitride layer. The anti-reflective coating may be formed in a CMOS process for fabricating the PN junction in the photodiode and CMOS devices for amplifying the photodetector signal, where the polysilicon gate layer is used as a etch stop. The P+ or N+ material in the PN junction of the photodiode has a distributed design where two portions of the region are separated by a distance in the range of Xd to 2Xd, where Xd is the one-sided junction depletion width, to enhance the electric field and to reduce the distance traveled by the carriers for enhancing bandwidth. A heavily doped region of the opposite type may be added between the two portions to further enhance the electric field.
    Type: Application
    Filed: February 7, 2001
    Publication date: August 2, 2001
    Inventor: Koon Wing Tsang
  • Publication number: 20010004118
    Abstract: An anti-reflective coating having a composite layer of silicon nitride and silicon dioxide may be formed over the entire photosensitive region of the photodetector to minimize the amount of reflection. The composite layer comprises a silicon nitride layer and a dielectric layer contiguous to the silicon nitride layer. The anti-reflective coating may be formed in a CMOS process for fabricating the PN junction in the photodiode and CMOS devices for amplifying the photodetector signal, where the polysilicon gate layer is used as a etch stop. The P+ or N+ material in the PN junction of the photodiode has a distributed design where two portions of the region are separated by a distance in the range of Xd to 2Xd, where Xd is the one-sided junction depletion width, to enhance the electric field and to reduce the distance traveled by the carriers for enhancing bandwidth. A heavily doped region of the opposite type may be added between the two portions to further enhance the electric field.
    Type: Application
    Filed: February 6, 2001
    Publication date: June 21, 2001
    Inventor: Koon Wing Tsang
  • Patent number: 6218719
    Abstract: An anti-reflective coating having a composite layer of silicon nitride and silicon dioxide may be formed over the entire photosensitive region of the photodetector to minimize the amount of reflection. The composite layer comprises a silicon nitride layer and a dielectric layer contiguous to the silicon nitride layer. The anti-reflective coating may be formed in a CMOS process for fabricating the PN junction in the photodiode and CMOS devices for amplifying the photodetector signal, where the polysilicon gate layer is used as a etch stop. The P+ or N+ material in the PN junction of the photodiode has a distributed design where two portions of the region are separated by a distance in the range of Xd to 2Xd, where Xd is the one-sided junction depletion width, to enhance the electric field and to reduce the distance traveled by the carriers for enhancing bandwidth. A heavily doped region of the opposite type may be added between the two portions to further enhance the electric field.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: April 17, 2001
    Assignee: Capella Microsystems, Inc.
    Inventor: Koon Wing Tsang
  • Patent number: 5784507
    Abstract: A top incident spectrometer includes a first distributed wavelength wedge filter region of order n.sub.1 that discriminates incoming radiation as a function of wedge location, at least one second wedge region order n.sub.2 (which region may be a graded dielectric film), and an underlying detector array. In another embodiment, a second dielectric wedge element includes a Fabrey-Perot etalon, a wedge dielectric film, or a graded index film matching the second dielectric wedge region to an underlying substrate. One or more slopes associated with wedge elements may also be varied to alter filter characteristics. Spatial characteristics may further be modified by including a dielectric material whose dielectric constant varies as a function of location. Wedge filter crosstalk is minimized by partitioning a wedge dielectric region in the lateral dimension.
    Type: Grant
    Filed: April 26, 1994
    Date of Patent: July 21, 1998
    Inventors: James W. Holm-Kennedy, Koon Wing Tsang, Datong Yang