Patents by Inventor Kosei Noda

Kosei Noda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150311074
    Abstract: An oxide semiconductor film is formed over a substrate. A sacrifice film is formed to such a thickness that the local maximum of the concentration distribution of an injected substance injected into the oxide semiconductor film in the depth direction of the oxide semiconductor film is located in a region from an interface between the substrate and the oxide semiconductor film to a surface of the oxide semiconductor film. Oxygen ions are injected as the injected substance into the oxide semiconductor film through the sacrifice film at such an acceleration voltage that the local maximum of the concentration distribution of the injected substance in the depth direction of the oxide semiconductor film is located in the region, and then the sacrifice film is removed. Further, a semiconductor device is manufactured using the oxide semiconductor film.
    Type: Application
    Filed: June 9, 2015
    Publication date: October 29, 2015
    Inventors: Daigo ITO, Yuichi SATO, Kosei NODA
  • Publication number: 20150303310
    Abstract: An object is to provide a semiconductor device having a structure with which parasitic capacitance between wirings can be sufficiently reduced. An oxide insulating layer serving as a channel protective layer is formed over part of an oxide semiconductor layer overlapping with a gate electrode layer. In the same step as formation of the oxide insulating layer, an oxide insulating layer covering a peripheral portion of the oxide semiconductor layer is formed. The oxide insulating layer which covers the peripheral portion of the oxide semiconductor layer is provided to increase the distance between the gate electrode layer and a wiring layer formed above or in the periphery of the gate electrode layer, whereby parasitic capacitance is reduced.
    Type: Application
    Filed: June 8, 2015
    Publication date: October 22, 2015
    Inventors: Shunpei Yamazaki, Hiroki Ohara, Toshinari Sasaki, Kosei Noda, Hideaki Kuwabara
  • Publication number: 20150279668
    Abstract: An insulating layer containing a silicon peroxide radical is used as an insulating layer in contact with an oxide semiconductor layer for forming a channel. Oxygen is released from the insulating layer, whereby oxygen deficiency in the oxide semiconductor layer and an interface state between the insulating layer and the oxide semiconductor layer can be reduced. Accordingly, a semiconductor device where reliability is high and variation in electric characteristics is small can be manufactured.
    Type: Application
    Filed: April 3, 2015
    Publication date: October 1, 2015
    Inventors: Yuta ENDO, Toshinari SASAKI, Kosei NODA, Mizuho SATO
  • Publication number: 20150270402
    Abstract: A semiconductor device that is suitable for miniaturization. A method for manufacturing a semiconductor device includes the steps of forming a semiconductor, forming a first conductor over the semiconductor, performing a second process on the first conductor so as to form a conductor according to a first pattern, forming a first insulator over the conductor having the first pattern, forming an opening in the first insulator, performing a third process on the conductor having the first pattern in the opening so as to form a first electrode and a second electrode and to expose the semiconductor, forming a second insulator over the first insulator, an inner wall of the opening, and an exposed portion of the semiconductor, forming a second conductor over the second insulator, and performing a fourth process on the second conductor so as to form a third electrode.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 24, 2015
    Inventors: Yuta ENDO, Kosei NODA
  • Publication number: 20150255617
    Abstract: A semiconductor device of stable electrical characteristics, whose oxygen vacancies in a metal oxide is reduced, is provided. The semiconductor device includes a gate electrode, a gate insulating film over the gate electrode, a first metal oxide film over the gate insulating film, a source electrode and a drain electrode which are in contact with the first metal oxide film, and a passivation film over the source electrode and the drain electrode. A first insulating film, a second metal oxide film, and a second insulating film are stacked sequentially in the passivation film.
    Type: Application
    Filed: May 26, 2015
    Publication date: September 10, 2015
    Inventors: Tadashi NAKANO, Mai SUGIKAWA, Kosei NODA
  • Patent number: 9130041
    Abstract: It is an object to manufacture a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. An insulating layer which covers an oxide semiconductor layer of the thin film transistor contains a boron element or an aluminum element. The insulating layer containing a boron element or an aluminum element is formed by a sputtering method using a silicon target or a silicon oxide target containing a boron element or an aluminum element. Alternatively, an insulating layer containing an antimony (Sb) element or a phosphorus (P) element instead of a boron element covers the oxide semiconductor layer of the thin film transistor.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: September 8, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Kosei Noda, Masayuki Sakakura, Yoshiaki Oikawa, Hotaka Maruyama
  • Patent number: 9123692
    Abstract: By reducing the contact resistance between an oxide semiconductor film and a metal film, a transistor that uses an oxide semiconductor film and has excellent on-state characteristics is provided. A semiconductor device includes a pair of electrodes over an insulating surface; an oxide semiconductor film in contact with the pair of electrodes; a gate insulating film over the oxide semiconductor film; and a gate electrode overlapping with the oxide semiconductor film with the gate insulating film interposed therebetween. In the semiconductor device, the pair of electrodes contains a halogen element in a region in contact with the oxide semiconductor film. Further, plasma treatment in an atmosphere containing fluorine can be performed so that the pair of electrodes contains the halogen element in a region in contact with the oxide semiconductor film.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: September 1, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kosei Noda, Yuta Endo
  • Publication number: 20150236163
    Abstract: A transistor includes a gate, a source, and a drain, the gate is electrically connected to the source or the drain, a first signal is input to one of the source and the drain, and an oxide semiconductor layer whose carrier concentration is 5×1014/cm3 or less is used for a channel formation layer. A capacitor includes a first electrode and a second electrode, the first electrode is electrically connected to the other of the source and the drain of the transistor, and a second signal which is a clock signal is input to the second electrode. A voltage of the first signal is stepped up or down to obtain a third signal which is output as an output signal through the other of the source and the drain of the transistor.
    Type: Application
    Filed: February 23, 2015
    Publication date: August 20, 2015
    Inventors: Shunpei YAMAZAKI, Hiroyuki MIYAKE, Masashi TSUBUKU, Kosei NODA
  • Patent number: 9082860
    Abstract: A semiconductor device of stable electrical characteristics, whose oxygen vacancies in a metal oxide is reduced, is provided. The semiconductor device includes a gate electrode, a gate insulating film over the gate electrode, a first metal oxide film over the gate insulating film, a source electrode and a drain electrode which are in contact with the first metal oxide film, and a passivation film over the source electrode and the drain electrode. A first insulating film, a second metal oxide film, and a second insulating film are stacked sequentially in the passivation film.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: July 14, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tadashi Nakano, Mai Sugikawa, Kosei Noda
  • Patent number: 9082864
    Abstract: A highly reliable semiconductor device is manufactured by giving stable electric characteristics to a transistor in which an oxide semiconductor film is used. A p-type oxide semiconductor material is contained in an n-type oxide semiconductor film, whereby carriers which are generated in the oxide semiconductor film without intention can be reduced. This is because electrons generated in the n-type oxide semiconductor film without intention are recombined with holes generated in the p-type oxide semiconductor material to disappear. Accordingly, it is possible to reduce carriers which are generated in the oxide semiconductor film without intention.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: July 14, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshinari Sasaki, Kosei Noda, Yuta Endo
  • Patent number: 9082858
    Abstract: The band tail state and defects in the band gap are reduced as much as possible, whereby optical absorption of energy which is in the vicinity of the band gap or less than or equal to the band gap is reduced. In that case, not by merely optimizing conditions of manufacturing an oxide semiconductor film, but by making an oxide semiconductor to be a substantially intrinsic semiconductor or extremely close to an intrinsic semiconductor, defects on which irradiation light acts are reduced and the effect of light irradiation is reduced essentially. That is, even in the case where light with a wavelength of 350 nm is delivered at 1×1013 photons/cm2·sec, a channel region of a transistor is formed using an oxide semiconductor, in which the absolute value of the amount of the variation in the threshold voltage is less than or equal to 0.65 V.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: July 14, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Tsubuku, Kosei Noda
  • Publication number: 20150187955
    Abstract: It is an object to manufacture a highly reliable semiconductor device including a thin film transistor whose electric characteristics are stable. An insulating layer which covers an oxide semiconductor layer of the thin film transistor contains a boron element or an aluminum element. The insulating layer containing a boron element or an aluminum element is formed by a sputtering method using a silicon target or a silicon oxide target containing a boron element or an aluminum element. Alternatively, an insulating layer containing an antimony (Sb) element or a phosphorus (P) element instead of a boron element covers the oxide semiconductor layer of the thin film transistor.
    Type: Application
    Filed: March 16, 2015
    Publication date: July 2, 2015
    Inventors: Shunpei YAMAZAKI, Junichiro SAKATA, Kosei NODA, Masayuki SAKAKURA, Yoshiaki OIKAWA, Hotaka MARUYAMA
  • Publication number: 20150187951
    Abstract: To provide a transistor with stable electric characteristics, provide a transistor having a small current in a non-conductive state, provide a transistor having a large current in a conductive state, provide a semiconductor device including the transistor, or provide a durable semiconductor device, a semiconductor device includes a first insulator containing excess oxygen, a semiconductor over the first insulator, a second insulator over the semiconductor, and a conductor having a region overlapping with the semiconductor with the second insulator provided therebetween. A region containing boron or phosphorus is located between the first insulator and the semiconductor.
    Type: Application
    Filed: December 23, 2014
    Publication date: July 2, 2015
    Inventors: Yuta Endo, Kosei Noda
  • Patent number: 9059298
    Abstract: An object is to provide a semiconductor device having a structure with which parasitic capacitance between wirings can be sufficiently reduced. An oxide insulating layer serving as a channel protective layer is formed over part of an oxide semiconductor layer overlapping with a gate electrode layer. In the same step as formation of the oxide insulating layer, an oxide insulating layer covering a peripheral portion of the oxide semiconductor layer is formed. The oxide insulating layer which covers the peripheral portion of the oxide semiconductor layer is provided to increase the distance between the gate electrode layer and a wiring layer formed above or in the periphery of the gate electrode layer, whereby parasitic capacitance is reduced.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: June 16, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hiroki Ohara, Toshinari Sasaki, Kosei Noda, Hideaki Kuwabara
  • Publication number: 20150137121
    Abstract: A highly reliable transistor which includes an oxide semiconductor and has high field-effect mobility and in which a variation in threshold voltage is small is provided. By using the transistor, a high-performance semiconductor device, which has been difficult to realize, is provided. The transistor includes an oxide semiconductor film which contains two or more kinds, preferably three or more kinds of elements selected from indium, tin, zinc, and aluminum. The oxide semiconductor film is formed in a state where a substrate is heated. Further, oxygen is supplied to the oxide semiconductor film with an adjacent insulating film and/or by ion implantation in a manufacturing process of the transistor, so that oxygen deficiency which generates a carrier is reduced as much as possible. In addition, the oxide semiconductor film is highly purified in the manufacturing process of the transistor, so that the concentration of hydrogen is made extremely low.
    Type: Application
    Filed: December 22, 2014
    Publication date: May 21, 2015
    Inventors: Kosei NODA, Shunpei YAMAZAKI, Tatsuya HONDA, Yusuke SEKINE, Hiroyuki TOMATSU
  • Publication number: 20150123123
    Abstract: The band tail state and defects in the band gap are reduced as much as possible, whereby optical absorption of energy which is in the vicinity of the band gap or less than or equal to the band gap is reduced. In that case, not by merely optimizing conditions of manufacturing an oxide semiconductor film, but by making an oxide semiconductor to be a substantially intrinsic semiconductor or extremely close to an intrinsic semiconductor, defects on which irradiation light acts are reduced and the effect of light irradiation is reduced essentially. That is, even in the case where light with a wavelength of 350 nm is delivered at 1×1013 photons/cm2·sec, a channel region of a transistor is formed using an oxide semiconductor, in which the absolute value of the amount of the variation in the threshold voltage is less than or equal to 0.65 V.
    Type: Application
    Filed: January 2, 2015
    Publication date: May 7, 2015
    Inventors: Masashi TSUBUKU, Kosei NODA
  • Patent number: 9012913
    Abstract: Provided is a fin-type transistor having an oxide semiconductor in a channel formation region in which the channel formation region comprising an oxide semiconductor is three-dimensionally structured and a gate electrode is arranged to extend over the channel formation region. Specifically, the fin-type transistor comprises: an insulator protruding from a substrate plane; an oxide semiconductor film extending beyond the insulator; a gate insulating film over the oxide semiconductor film; and a gate electrode over and extending beyond the oxide semiconductor film. This structure allows the expansion of the width of the channel formation region, which enables the miniaturization and high integration of a semiconductor device having the transistor. Additionally, the extremely small off-state current of the transistor contributes to the formation of a semiconductor device with significantly reduced power consumption.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kosei Noda, Yuta Endo
  • Publication number: 20150097595
    Abstract: To reduce a leakage current of a transistor so that malfunction of a logic circuit can be suppressed. The logic circuit includes a transistor which includes an oxide semiconductor layer having a function of a channel formation layer and in which an off current is 1×10?13 A or less per micrometer in channel width. A first signal, a second signal, and a third signal that is a clock signal are input as input signals. A fourth signal and a fifth signal whose voltage states are set in accordance with the first to third signals which have been input are output as output signals.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 9, 2015
    Inventors: Shunpei YAMAZAKI, Jun KOYAMA, Masashi TSUBUKU, Kosei NODA
  • Patent number: 8999811
    Abstract: An insulating layer containing a silicon peroxide radical is used as an insulating layer in contact with an oxide semiconductor layer for forming a channel. Oxygen is released from the insulating layer, whereby oxygen deficiency in the oxide semiconductor layer and an interface state between the insulating layer and the oxide semiconductor layer can be reduced. Accordingly, a semiconductor device where reliability is high and variation in electric characteristics is small can be manufactured.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: April 7, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuta Endo, Toshinari Sasaki, Kosei Noda, Mizuho Sato
  • Publication number: 20150084050
    Abstract: Hydrogen concentration and oxygen vacancies in an oxide semiconductor film are reduced. Reliability of a semiconductor device which includes a transistor using an oxide semiconductor film is improved. One embodiment of the present invention is a semiconductor device which includes a base insulating film; an oxide semiconductor film formed over the base insulating film; a gate insulating film formed over the oxide semiconductor film; and a gate electrode overlapping with the oxide semiconductor film with the gate insulating film provided therebetween. The base insulating film shows a signal at a g value of 2.01 by electron spin resonance. The oxide semiconductor film does not show a signal at a g value of 1.93 by electron spin resonance.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Inventors: Toshinari SASAKI, Kosei NODA, Yuhei SATO, Yuta ENDO