Patents by Inventor Koukou Suu

Koukou Suu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9059105
    Abstract: Disclosed is an ashing apparatus and its method of manufacture wherein decrease in processing efficiency is suppressed. Specifically, a shower plate is arranged to face a substrate stage on which a substrate is placed, and diffuses oxygen radicals supplied into a chamber. A metal blocking plate is arranged between the shower plate and the substrate stage and has a through hole through which oxygen radicals pass. In addition, the metal blocking plate has a first layer, which is made of a metal same as the one exposed in the substrate, on the surface facing the substrate.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: June 16, 2015
    Assignee: Ulvac, Inc.
    Inventors: Masahisa Ueda, Takashi Kurimoto, Michio Ishikawa, Koukou Suu, Toshiya Yogo
  • Patent number: 8993449
    Abstract: There is provided an etching method which can form trenches or via holes having desired aspect ratios and shapes in a to-be-processed object made of silicon. The etching method includes: a hydrogen halide-containing gas-based etching step of etching a silicon substrate by introducing a hydrogen halide-containing gas into a vacuum chamber; a fluorine-containing gas-based etching step of etching the silicon substrate by introducing a fluorine-containing gas into the vacuum chamber; a protective film formation step forming a protective film on the silicon substrate by sputtering a solid material; and a protective film removal step of removing part of the protective film by applying radio frequency bias power to a substrate electrode. The fluorine-containing gas-based etching step, the protective film formation step, and the protective film removal step are repeatedly performed in this order.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: March 31, 2015
    Assignee: Ulvac, Inc.
    Inventors: Yasuhiro Morikawa, Koukou Suu
  • Publication number: 20150056373
    Abstract: [Object] To provide a deposition method and a deposition apparatus capable of forming a metal compound layer having desired film characteristics uniformly in a substrate surface. [Solving Means] A deposition method according to an embodiment of the present invention includes evacuating an inside of a vacuum chamber 10 having a deposition chamber 101 formed inside a cylindrical partition wall 20 and an exhaust chamber 102 formed outside the partition wall 20, via an exhaust line 50 connected to the exhaust chamber 102. A process gas containing a reactive gas is introduced into the exhaust chamber 102. With the deposition chamber 101 being maintained at a lower pressure than the exhaust chamber 102, the process gas is supplied to the deposition chamber 101 via a gas flow passage 80 between the partition wall 20 and the vacuum chamber 10.
    Type: Application
    Filed: July 25, 2013
    Publication date: February 26, 2015
    Applicant: ULVAC, INC.
    Inventors: Natsuki Fukuda, Kazunori Fukuju, Yutaka Nishioka, Koukou Suu
  • Publication number: 20150013715
    Abstract: An ashing device that prevents the ashing rate from changing over time. The ashing device ashes organic material on a substrate including an exposed metal in a processing chamber. The ashing device includes a path, which is formed in the processing chamber and through which active species supplied to the processing chamber pass. The path is defined by a surface on which the metal scattered from the substrate by the active species is collectible, with the surface being formed so as to expose a metal that is of the same kind.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 15, 2015
    Inventors: Masahisa Ueda, Takashi Kurimoto, Kyuzo Nakamura, Koukou Suu, Toshiya Yogo, Kazushige Komatsu, Nobusuke Tachibana
  • Publication number: 20140361864
    Abstract: To provide a resistance change device that can be protected from an excess current without enlarging a device size. A resistance change device 1 according to the present embodiment includes a lower electrode layer 3, an upper electrode layer 6, a first metal oxide layer 51, a second metal oxide layer 52, and a current limiting layer 4. The first metal oxide layer 51 is disposed between the lower electrode layer 3 and the upper electrode layer 6, and has a first resistivity. The second metal oxide layer 52 is disposed between the first metal oxide layer 51 and the upper electrode layer 6, and has a second resistivity higher than the first resistivity. The current limiting layer 4 is disposed between the lower electrode layer 3 and the first metal oxide layer 51, and has a third resistivity higher than the first resistivity and lower than the second resistivity.
    Type: Application
    Filed: August 27, 2013
    Publication date: December 11, 2014
    Inventors: Natsuki Fukuda, Kazunori Fukuju, Yutaka Nishioka, Koukou Suu
  • Publication number: 20140166966
    Abstract: To provide a resistance change element which does not require a forming process and enables reduction of power consumption and miniaturization of the element, and to provide a method for producing it. A resistance change element 1 according to an embodiment of the present invention includes a bottom electrode layer 3, a top electrode layer 5 and an oxide semiconductor layer 4. The oxide semiconductor layer 4 has a first metal oxide layer 41 and a second metal oxide layer 42. The first metal oxide layer 41 is formed between the bottom electrode layer 3 and the top electrode layer 5, and in ohmic contact with the bottom electrode layer 3. The second metal oxide layer 42 is formed between the first metal oxide layer 41 and the top electrode layer 5, and in ohmic contact with the top electrode layer 5.
    Type: Application
    Filed: June 7, 2012
    Publication date: June 19, 2014
    Applicant: ULVAC, INC.
    Inventors: Yutaka Nishioka, Kazumasa Horita, Natsuki Fukuda, Shin Kikuchi, Koukou Suu
  • Publication number: 20140102879
    Abstract: [Object] To provide a method and an apparatus for manufacturing a variable resistance element by which a metal oxide layer having a desired resistivity can be precisely formed. [Solving Means] The method of manufacturing the variable resistance element according to an embodiment of the present invention includes a step of forming a first metal oxide having a first resistivity and a step of forming a second metal oxide having a second resistivity different from the first resistivity. The first metal oxide is formed on a substrate by sputtering, while sputtering a first target made of an oxide of metal, a second target made of the metal with a first power. The second metal oxide layer is formed on the first metal oxide layer by sputtering the second target with a second power different from the first power while sputtering the first target.
    Type: Application
    Filed: June 7, 2012
    Publication date: April 17, 2014
    Applicant: ULVAC, INC.
    Inventors: Yutaka Nishioka, Kazumasa Horita, Natsuki Fukuda, Shin Kikuchi, Youhei Ogawa, Koukou Suu
  • Patent number: 8591655
    Abstract: A thin film-forming apparatus, for ensuring uniform plane distribution of properties of a film formed on a substrate surface, has a gas-supply port 24a supplying a gas mixture from a gas-mixing chamber 24 to a shower head 25. The port is arranged at the peripheral portion on the bottom face of the gas-mixing chamber so that the gas mixture flows from the upper peripheral region of the head towards the center thereof. An exhaust port 32 discharging the exhaust gas generated in the film-forming chamber 3 is arranged at a position lower than the level of a stage 31 during film-formation directing the exhaust gas towards the side wall of the chamber 3 and discharging the exhaust gas through the exhaust port. The stage 31 is designed to move freely up and down to adjust the distance between the shower head 25 and substrate S.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: November 26, 2013
    Assignee: Ulvac, Inc.
    Inventors: Takeshi Masuda, Masahiko Kajinuma, Takakazu Yamada, Hiroto Uchida, Masaki Uematsu, Koukou Suu
  • Publication number: 20130224381
    Abstract: In order to provide a thin film manufacturing method and a thin film manufacturing apparatus, wherein a thin film with good reproducibility can be manufactured at low cost, and in a way wherein resources are saved, a dummy substrate (S2) is conveyed into a chamber (51), dummy processing gas is supplied to the dummy substrate (S2), a product substrate (S3) is conveyed into the chamber (51), and raw material gas different from the dummy processing gas, and containing therein metal material for manufacturing a thin film with the Metal Organic Chemical Vapor Deposition (MOCVD) method, is supplied to the product substrate (S3). Since the raw material gas is not used as dummy processing gas, the amount of metal material to be used can be inhibited, and a thin film with good reproducibility can be manufactured at low cost, and in a way wherein resources are saved.
    Type: Application
    Filed: September 15, 2011
    Publication date: August 29, 2013
    Applicant: ULVAC, INC
    Inventors: Takeshi Masuda, Takuya Ideno, Masahiko Kajinuma, Nobuhiro Odajima, Yohei Uchida, Koukou Suu
  • Publication number: 20130216710
    Abstract: [Problem] To provide a thin film production process and a thin film production device, both of which enable the production of a dielectric thin film having small surface roughness. [Solution] This thin film production process comprises: supplying a mixed gas to a substrate (S) that is placed in a chamber (51) and has been heated, wherein the mixed gas comprises a metal raw material gas that serves as a raw material for a dielectric thin film having perovskite-type crystals and an oxidation gas that can react with the metal raw material gas; stopping the supply of the metal raw material gas to the substrate (S); and, subsequent to the stopping of the supply of the metal raw material gas, limiting the supply of the oxidation gas to the substrate (S).
    Type: Application
    Filed: September 13, 2011
    Publication date: August 22, 2013
    Applicant: ULVAC, INC.
    Inventors: Takeshi Masuda, Masahiko Kajinuma, Takuya Ideno, Nobuhiro Odajima, Yohei Uchida, Koukou Suu
  • Publication number: 20130023062
    Abstract: In an apparatus for manufacturing a ceramic thin film by employing a thermal CVD method, an internal jig, which is provided with a heat radiation material film on the surface, is provided at a position that faces a substrate (S) on which the film is to be formed. The thin film and a semiconductor device are manufactured using such apparatus.
    Type: Application
    Filed: November 30, 2010
    Publication date: January 24, 2013
    Inventors: Takeshi Masuda, Masahiko Kajinuma, Nobuyuki Kato, Koukou Suu
  • Publication number: 20120305392
    Abstract: Provided is a method for stably manufacturing high-density sintered LiCoO2. Said method uses a CIP-and-sintering method, which has a forming step using cold hydrostatic pressing and a sintering step. The pressing force is at least 1000 kg/cm2, the sintering temperature is between 1050° C. and 1120° C., and the sintering time is at least two hours. This makes it possible to stably manufacture sintered LiCoO2 with a relative density of at least 90%, a resistivity of at most 3 k?·cm, and a mean grain diameter between 20 and 50 ?m.
    Type: Application
    Filed: December 24, 2010
    Publication date: December 6, 2012
    Applicant: ULVAC, INC.
    Inventors: Poong Kim, Koukou Suu, Shouichi Hashiguchi, Takanori Mikashima, Ryouta Uezono
  • Publication number: 20120305391
    Abstract: Disclosed are a manufacturing method for a LiCoO2 sintered body, said manufacturing method enabling the safe manufacturing of a high density sintered body, and a sputtering target. The LiCoO2 sintered body manufacturing method includes a step in which LiCoO2 powder is filled into a mold. The pressure inside the mold is reduced, and the LiCoO2 powder is pressure sintered inside the mold at a temperature between 800° C. and 880° C. inclusive. The above method enables the safe production of a LiCoO2 sintered body having a relative density of at least 95% and an average particle diameter of 10 ?m-30 ?m inclusive.
    Type: Application
    Filed: December 24, 2010
    Publication date: December 6, 2012
    Applicant: ULVAC, INC.
    Inventors: Poong Kim, Koukou Suu, Shouichi Hashiguchi, Takanori Mikashima, Takatoshi Oginosawa, Wataru Iteue
  • Patent number: 8262798
    Abstract: The present invention herein provides a shower head whose temperature can be controlled in consideration of the film-forming conditions selected and a thin film-manufacturing device which permits the stable and continuous formation of thin films including only a trace amount of particles while reproducing a good film thickness distribution and compositional distribution, and a high film-forming rate and which is excellent in the productivity and the mass-producing ability as well as a method for the preparation of such a film.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: September 11, 2012
    Assignee: ULVAC, Inc.
    Inventors: Takakazu Yamada, Takeshi Masuda, Masahiko Kajinuma, Yutaka Nishioka, Masaki Uematsu, Koukou Suu
  • Publication number: 20120171869
    Abstract: There is provided an etching method which can form trenches or via holes having desired aspect ratios and shapes in a to-be-processed object made of silicon. The etching method includes: a hydrogen halide-containing gas-based etching step of etching a silicon substrate by introducing a hydrogen halide-containing gas into a vacuum chamber; a fluorine-containing gas-based etching step of etching the silicon substrate by introducing a fluorine-containing gas into the vacuum chamber; a protective film formation step forming a protective film on the silicon substrate by sputtering a solid material; and a protective film removal step of removing part of the protective film by applying radio frequency bias power to a substrate electrode. The fluorine-containing gas-based etching step, the protective film formation step, and the protective film removal step are repeatedly performed in this order.
    Type: Application
    Filed: August 12, 2010
    Publication date: July 5, 2012
    Inventors: Yasuhiro Morikawa, Koukou Suu
  • Patent number: 8168001
    Abstract: Film-forming apparatus including a film-forming vacuum chamber having a stage for a substrate, a chamber for mixing gas comprising a raw gas and a reactive gas connected to the film-forming chamber, a chamber for vaporizing the raw material, and a gas head for introducing the mixed gas into the film-forming chamber, disposed on the upper face of the film-forming chamber and opposed to the stage. Particle traps with controllable temperatures are positioned between the vaporization chamber and the mixing chamber and on the downstream side of the mixing chamber. When forming a thin film with the apparatus, a reactive gas and/or a carrier gas are passed through the film-forming chamber while opening a valve in a by-pass line, connecting the primary side to the secondary side of the particle trap arranged at the downstream side of the mixing chamber. The valve is then closed and the film-forming operation is initiated.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: May 1, 2012
    Assignee: Ulvac, Inc.
    Inventors: Hiroto Uchida, Takehito Jinbo, Takeshi Masuda, Masahiko Kajinuma, Takakazu Yamada, Masaki Uematsu, Koukou Suu, Isao Kimura
  • Patent number: 8153926
    Abstract: An etching method and an etching system are adapted to produce a high etch selectivity for a mask, an excellent anisotropic profile and a large etching depth. An etching system according to the invention comprises a floating electrode arranged vis-à-vis a substrate electrode in a vacuum chamber and held in a floating state in terms of electric potential, a material arranged at the side of the floating electrode facing the substrate electrode to form an anti-etching film and a control unit for intermittently applying high frequency power to the floating electrode.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: April 10, 2012
    Assignee: ULVAC, Inc.
    Inventors: Yasuhiro Morikawa, Toshio Hayashi, Koukou Suu
  • Patent number: 8133325
    Abstract: This dry cleaning method for a plasma processing apparatus is a dry cleaning method for a plasma processing apparatus that includes: a vacuum container provided with a dielectric member; a planar electrode and a high-frequency antenna that are provided outside the dielectric member; and a high-frequency power source that supplies high-frequency power to both the high-frequency antenna and the planar electrode, to thereby introduce high-frequency power into the vacuum container via the dielectric member and produce an inductively-coupled plasma, the method comprising the steps of: introducing a gas including fluorine into the vacuum container and also introducing high-frequency power into the vacuum container from the high-frequency power source, to thereby produce an inductively-coupled plasma in the gas including fluorine; and by use of the inductively-coupled plasma, removing a product including at least one of a precious metal and a ferroelectric that is adhered to the dielectric member.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: March 13, 2012
    Assignee: ULVAC, Inc.
    Inventors: Masahisa Ueda, Yutaka Kokaze, Mitsuhiro Endou, Koukou Suu
  • Patent number: 8118935
    Abstract: A thin film manufacturing system, wherein a stage for placing a substrate thereon is disposed within a vacuum reactor and a gas head for supplying a film forming gas to a central area on a top face of the vacuum reactor is arranged so that the gas head is opposed to the stage. A cylindrical sleeve member is disposed and comes in close contact with a side wall of the stage to surround a periphery of the stage. The height of the stage can be established at the position where the volume of a second space formed below the stage and connected to a vacuum discharge means is larger than that of a first space formed above the stage, in such a manner that an exhaust gas is isotropically discharged from the first space without causing any convection current therein through the interstice between the sleeve member and an inner wall surface constituting the reactor.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: February 21, 2012
    Assignee: ULVAC, Inc.
    Inventors: Takakazu Yamada, Takeshi Masuda, Masahiko Kajinuma, Masaki Uematsu, Koukou Suu
  • Publication number: 20110198555
    Abstract: A chalcogenide film of the present invention is deposited, by sputtering, in a contact hole formed in an insulating layer on a substrate. The chalcogenide film comprises an underlayer film formed at least on a bottom portion of the contact hole and a crystal layer made of a chalcogen compound, and formed onto the underlayer film and in the contact hole.
    Type: Application
    Filed: October 1, 2008
    Publication date: August 18, 2011
    Applicant: ULVAC, INC.
    Inventors: Shin Kikuchi, Yutaka Nishioka, Isao Kimura, Takehito Jimbo, Koukou Suu