Patents by Inventor Krishnamurthy Anand

Krishnamurthy Anand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140147242
    Abstract: A seal system, for an apparatus that includes a rotatable portion with airfoils coupled thereto and a stationary portion with an inner surface, includes an abradable portion including at least one abradable layer of an abradable material formed over the inner surface. The seal system also includes an abrading portion disposed over at least a portion of a substrate of the airfoil. The abrading portion includes at least one abrading layer formed on at least a portion of the substrate and a plurality of abrasive particles embedded within the abrading layer. The plurality of abrasive particles includes at least one of substantially all of one of tantalum carbide (TaC), aluminum oxide (Al2O3), and ziconia (ZrO2), cubic boron nitride (cBN) and Al2O3 in predetermined ratios, cBN, Al2O3 and ZrO2 in predetermined ratios, Al2O3 and ZrO2 fused together in predetermined ratios, and TaC and Al2O3 in predetermined ratios.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: NUOVO PIGNONE S.R.L.
    Inventors: Farshad Ghasripoor, Iacopo Giovannetti, Massimo Giannozzi, Krishnamurthy Anand, Nuo Sheng, Nicole Barbara Piche, Luc Stephane LeBlanc, Wayne Charles Hasz, Warren Arthur Nelson, Paul Matthew Thomas, Dennis Michael Gray
  • Patent number: 8692564
    Abstract: A method for use in determining the thickness of a layer of interest in a multi-layer structure. A first electrode is positioned in contact with a first surface of the multi-layer structure, and a second electrode is positioned in contact with a second surface of the multi-layer structure. The second surface is substantially opposite the first surface. The first electrode is pressed against the multi-layer structure at a predetermined sampling pressure, and the structure is optionally adjusted to a predetermined sampling temperature. The electrical impedance between the first electrode and the second electrode is measured.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: April 8, 2014
    Assignee: General Electric Company
    Inventors: Atanu Saha, Krishnamurthy Anand, Hari Nadathur Seshadri, Karthick Vilapakkam Gourishankar, Filippo Cappuccini
  • Publication number: 20130340403
    Abstract: A compressor blade for use in a compressor section of a gas turbine engine, comprising: a martensitic stainless steel compressor blade and an abrasive coating having an anodic component. The compressor blade has a blade portion, a dovetail portion and a platform portion intermediate the blade portion and the dovetail portion, the blade portion terminating in a tip opposite the dovetail portion. A cobalt-based coating overlies at least the blade portion of the compressor blade. The cobalt-based coating comprises a cobalt based material that includes precipitates of tungsten carbide that provide erosion resistance and particles of a sacrificial metal-based material distributed through the cobalt-based coating that provide galvanic corrosion resistance to the system.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 26, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Krishnamurthy ANAND, Yuk-Chiu LAU, Paul MATHEW, Surinder Singh PABLA, Guruprasad SUNDARARAJAN, Mohandas NAYAK
  • Publication number: 20130180432
    Abstract: Disclosed is a coating, a turbine component, and a process of fabricating a turbine component. The coating includes a ceramic phase formed by ceramic particles and a ductile matrix having a ductility greater than the ceramic phase. The ceramic phase includes substantially the same microstructure as the ceramic particles. The turbine component includes a surface having the coating. The process includes applying the coating to the surface of the turbine component.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Eklavya CALLA, Warren Arthur NELSON, Paul Stephen DIMASCIO, Krishnamurthy ANAND, Sundar AMANCHERLA, Maruthi MANCHIKANTI
  • Publication number: 20130177705
    Abstract: A process for applying a bond coat layer to a substrate includes cold spraying a first powdered material onto a surface of the substrate at a first velocity, wherein the first powdered material has a first particle size distribution; and cold spraying a second powdered material onto the surface at a second velocity to form the bond coat layer, wherein the second powdered material has a second particle size distribution and the bond coat layer comprises a microstructure comprising at least the first and second particle sizes.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: EKLAVYA CALLA, SUNDAR AMANCHERLA, KRISHNAMURTHY ANAND
  • Publication number: 20130177437
    Abstract: A process for applying a hard coating to a turbine rotor comprising providing a turbine rotor having at least one surface; applying a first coating to the at least one surface, the first coating being cold sprayed onto the at least one surface; applying a second coating onto the first coating to form the hard coating, wherein the hard coating is configured to substantially resist wear of a brush seal in physical communication with the turbine rotor.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: SUNDAR AMANCHERLA, KRISHNAMURTHY ANAND, EKLAVYA CALLA, JON CONRAD SCHAEFFER, HARIHARAN SUNDARAM
  • Patent number: 8475882
    Abstract: A titanium aluminide application process and article with a titanium aluminide surface are disclosed. The process includes cold spraying titanium aluminide onto an article within a treatment region to form a titanium aluminide surface. The titanium aluminide surface includes a refined gamma/alpha2 structure and/or the titanium aluminide is cold sprayed from a solid feedstock of a pre-alloyed powder.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: July 2, 2013
    Assignee: General Electric Company
    Inventors: Jon Conrad Schaeffer, Krishnamurthy Anand, Sundar Amancherla, Eklayva Calla
  • Publication number: 20130115867
    Abstract: An enclosure system is provided having a shroud configured to cover at least a portion of a shaft. The shroud includes an input port and an output port. The input port is configured to accept at least one of a coating tool and an abrasive supplying tool. The output port is connected to a vacuum system.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 9, 2013
    Inventors: Krishnamurthy Anand, Yuk-Chiu Lau, Sundar Amancherla, Eklavya Calla, Viswanathan Venkatachalapathy, James Warren Pemrick
  • Publication number: 20130101459
    Abstract: A titanium aluminide application process and article with a titanium aluminide surface are disclosed. The process includes cold spraying titanium aluminide onto an article within a treatment region to form a titanium aluminide surface. The titanium aluminide surface includes a refined gamma/alpha2 structure and/or the titanium aluminide is cold sprayed from a solid feedstock of a pre-alloyed powder.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 25, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jon Conrad SCHAEFFER, Krishnamurthy ANAND, Sundar AMANCHERLA, Eklayva CALLA
  • Publication number: 20130089726
    Abstract: A process of applying a porous metallic structure and a cold-sprayed article are disclosed. The process includes cold spraying a solid feedstock and a low-melt material onto an article and removing at least a portion of the low-melt materials or applying a porous metallic structure includes cold spraying onto an article with two converging-diverging nozzles. The cold-sprayed article includes a porous metallic structure having a portion formed from cold spraying a solid feedstock. The portion includes the phases and microstructure of the solid feedstock.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 11, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Krishnamurthy ANAND, Eklavya CALLA, Sheo Narain GIRI
  • Publication number: 20130084399
    Abstract: A coating composition, a process of applying a coating having a coating composition, and a process of forming a coating composition are disclosed. The coating composition includes an alloy and an oxide component comprising nickel oxide. The process of applying the coating includes cold spraying the coating onto the article. The process of forming the coating composition includes blending and milling the alloy with the oxide component.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Yuk-Chiu LAU, Surinder Singh PABLA, David Vincent BUCCI, Paul MATHEW, Ronald Ralph CAIRO, Krishnamurthy ANAND, Guruprasad SUNDARARAJAN, Mohandas NAYAK, Eklavya CALLA
  • Publication number: 20130042456
    Abstract: A self-lubricating brush seal assembly, for a power generation system and method of reducing air leakage in a power generation system including a plurality of self-lubricating members is provided. The plurality of self-lubricating members include a plurality of self-lubricating bristles, a plurality of cores sheathed in a self-lubricating braid, a plurality of cores having an outer diameter coated with self-lubricating material and a solid lubricating pack. The lubricating material is selected from graphite, hexagonal-boron nitrite (hBN), molybdenum disulfide (MoS2), tungsten disulfide (WS2), titanium nitride (TiN), titanium aluminum nitride (TiAlN), titanium carbonitride (TiCN), and combinations thereof.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 21, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Krishnamurthy ANAND, Surinder Singh PABLA, Sundar AMANCHERLA, Paul MATHEW
  • Patent number: 8337996
    Abstract: A vanadium resistant coating system resistant to high temperature vanadium attack. The system comprises a high temperature superalloy substrate. A bond coat overlies the superalloy substrate. The bond coat may be applied in multiple layers. A ceramic coating overlies the bond coat. The ceramic coating further comprises a zirconium oxide stabilized by at least one cation selected from the group consisting of Yb3+, Lu3+, Sc3+ and Ce4+, in the amounts of about 5-10 weight percent. An overcoat may overlie the ceramic coating. The overcoat may be a sacrificial layer of YSZ infiltrated with cations having an atomic radius larger than Y3+. Alternatively, the overcoat may comprise zirconium oxide stabilized by Ce4+.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: December 25, 2012
    Assignee: General Electric Company
    Inventors: Surinder Singh Pabla, Vinod Kumar Pareek, Suchismita Sanyal, Krishnamurthy Anand, Prajina Bhattacharya
  • Patent number: 8268237
    Abstract: A method of coating a substrate with cryo-milled, nano-grained particles includes forming a face-centered-cubic gamma matrix comprising nickel, cobalt, chromium, tungsten and molybdenum, adding a dispersion strengthening material to the gamma matrix to form a first mixture, cryo-milling the first mixture to form a second mixture to form a nano-grained structure, and cold spraying the second mixture onto a substrate to form a coating having a nano-grained structure.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventors: Eklavya Calla, Krishnamurthy Anand, Pazhayannur Ramanathan Subramanian, Sanjay Kumar Sondhi, Ramkumar Oruganti
  • Publication number: 20120200304
    Abstract: A method for use in determining the thickness of a layer of interest in a multi-layer structure. A first electrode is positioned in contact with a first surface of the multi-layer structure, and a second electrode is positioned in contact with a second surface of the multi-layer structure. The second surface is substantially opposite the first surface. The first electrode is pressed against the multi-layer structure at a predetermined sampling pressure, and the structure is optionally adjusted to a predetermined sampling temperature. The electrical impedance between the first electrode and the second electrode is measured.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 9, 2012
    Inventors: Atanu Saha, Krishnamurthy Anand, Hari Nadathur Seshadri, Karthick Vilapakkam Gourishankar, Filippo Cappuccini
  • Publication number: 20120129000
    Abstract: A vanadium resistant coating system resistant to high temperature vanadium attack. The system comprises a high temperature superalloy substrate. A bond coat overlies the superalloy substrate. The bond coat may be applied in multiple layers. A ceramic coating overlies the bond coat. The ceramic coating further comprises a zirconium oxide stabilized by at least one cation selected from the group consisting of Yb3+, Lu3+, Sc3+ and Ce4+, in the amounts of about 5-10 weight percent. An overcoat may overlie the ceramic coating. The overcoat may be a sacrificial layer of YSZ infiltrated with cations having an atomic radius larger than Y3+. Alternatively, the overcoat may comprise zirconium oxide stabilized by Ce4+.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 24, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Surinder Singh Pabla, Vinod Kumar Pareek, Suchismita Sanyal, Krishnamurthy Anand, Prajina Bhattacharya
  • Publication number: 20110312860
    Abstract: A composition for a wear-resistant and low-friction coating is presented. The coating composition includes a hard ceramic phase, a metallic binder phase and a lubricant phase. The lubricant phase includes a multi-component oxide. An article having a wear-resistant and low-friction coating and a method of making such a coating are also described.
    Type: Application
    Filed: June 17, 2010
    Publication date: December 22, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Paul Mathew, Krishnamurthy Anand, Mohandas Nayak, Mamatha Nagesh, Shalini Thimmegowda
  • Publication number: 20110165433
    Abstract: Process for providing a protective coating to a metal surface by applying a nickel or tantalum plate layer to the surface and dispersing particles of a hard material such as diamond, alumina, vanadium nitride, tantalum carbide and/or tungsten carbide within the nickel or tantalum plate layer as the plating is occurring.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 7, 2011
    Applicant: General Electric Company
    Inventors: Surinder S. Pabla, Krishnamurthy Anand, Paul S. Dimascio, Stuart S. Collins, James A. Ruud, Suchismita Sanyal
  • Publication number: 20100304084
    Abstract: A coating composition is described, having a first coating layer which includes a metallic matrix in which metal carbide particles are dispersed; and a hard, dense second coating layer disposed over the first coating layer. The second coating layer is formed from a metal nitride-type material, and has an average roughness of less than about 80 micro-inches (Ra). Related articles and processes are also disclosed.
    Type: Application
    Filed: September 30, 2009
    Publication date: December 2, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Krishnamurthy Anand, Tamara Jean Muth, Srinidhi Sampath, Prajina Bhattacharya, Biju Dasan
  • Publication number: 20100304181
    Abstract: A coating composition is described, having a first coating layer which includes a nickel-chromium matrix in which metal carbide particles are dispersed; and a hard, dense second coating layer disposed over the first coating layer. The second coating layer is formed from a metal nitride-type material, and has an average roughness of less than about 80 micro-inches (Ra). Related articles and processes are also disclosed.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Krishnamurthy Anand, Tamara Jean Muth, Srinidhi Sampath, Prajina Bhattacharya, Biju Dasan