Patents by Inventor Krishnamurthy Anand

Krishnamurthy Anand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100226783
    Abstract: A sacrificial and erosion-resistant turbine compressor airfoil includes a turbine compressor airfoil having a modified airfoil surface. The airfoil surface has an airfoil coating that includes a sacrificial coating comprising a layer of Al, Cr, Zn, an Ni—Al alloy, an Al—Si alloy, an Al-based alloy, a Cr-based alloy or a Zn-based alloy, an Al polymer composite, or a combination thereof, or a layer of a conductive undercoat and an overcoat of an inorganic matrix binder having a plurality of ceramic particles and conductive particles embedded therein disposed on the undercoat. The airfoil coating also includes an sacrificial coating, wherein one of the sacrificial coating or the erosion-resistant coating is disposed on the airfoil surface and the other of the corrosion-resistant coating or the erosion-resistant coating is disposed on the respective one, and wherein the sacrificial coating is more anodic than the airfoil surface or the erosion-resistant coating.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 9, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jane Marie Lipkin, Krishnamurthy Anand, David Vincent Bucci, Yuk-Chiu Lau, Surinder Pabla, Vinod Kumar Pareek, Jon Conrad Schaeffer, Guruprasad Sundararajan
  • Publication number: 20100172789
    Abstract: A method of coating a substrate with cryo-milled, nano-grained particles includes forming a face-centered-cubic gamma matrix comprising nickel, cobalt, chromium, tungsten and molybdenum, adding a dispersion strengthening material to the gamma matrix to form a first mixture, cryo-milling the first mixture to form a second mixture to form a nano-grained structure, and cold spraying the second mixture onto a substrate to form a coating having a nano-grained structure.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Eklavya Calla, Krishnamurthy Anand, Pazhayannur Ramanathan Subramanian, Sanjay Kumar Sondhi, Ramkumar Oruganti
  • Publication number: 20090297720
    Abstract: Disclosed herein is an erosion and corrosion resistant coating comprising a metallic binder, a plurality of hard particles, and a plurality of sacrificial particles. Also disclosed is a method of improving erosion and corrosion resistance of a metal component comprising disposing on a surface of the metal component the foregoing erosion and corrosion resistant coating comprising, and a metal component comprising a metal component surface and the foregoing erosion and corrosion resistant coating comprising a first surface and a second surface opposite the first surface, wherein the first surface is disposed on the metal component surface.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 3, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Thodla Ramgopal, Krishnamurthy Anand, David Vincent Bucci, Nitin Jayaprakash, Jane Marie Lipkin, Tamara Jean Muth, Surinder Singh Pabla, Vinod Kumar Pareek, Guru Prasad Sundararajan
  • Patent number: 7505564
    Abstract: A bearing assembly mounted in an x-ray tube includes a bearing race and a bearing ball positioned adjacent to the bearing race. A lubricant is deposited on a first portion of a bare metal of one of the bearing race and the bearing ball, and a metal matrix deposited on a second portion of the bare metal.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: March 17, 2009
    Assignee: General Electric Company
    Inventors: Krishnamurthy Anand, Dennis Michael Gray, Pazhayannur R. Subramanian, Srinidhi Sampath, Carey Shawn Rogers, Steven Alfred Tysoe, Richard Arthur Nardi
  • Patent number: 7431566
    Abstract: Erosion resistant coating processes and material improvements for line-of-sight applications. The erosion resistant coating composition includes nanostructured grains of tungsten carbide (WC) and/or submicron sized grains of WC embedded into a cobalt chromium (CoCr) binder matrix. A high velocity air fuel thermal spray process (HVAF) is used to create thick coatings in excess of about 500 microns with high percentages of primary carbide for longer life better erosion resistant coatings. These materials and processes are especially suited for hydroelectric turbine components.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: October 7, 2008
    Assignee: General Electric Company
    Inventors: Dennis Michael Gray, Krishnamurthy Anand, Warren Arthur Nelson, Hans Aunemo, Alain Demers, Olav Rommetveit
  • Publication number: 20080142126
    Abstract: A metallic structure having a graded microstructure is provided. The metallic structure comprises a graded region comprising a plurality of grains having a gradient in grain size varying as a function of position between a first median grain size at an outer region and a second median grain size at an inner region and a plurality of dispersoids dispersed within the microstructure. The first median grain size is different from the second median grain size. A method of forming a metallic structure having a graded microstructure is also provided. The method comprises: providing a metallic structure comprising at least one reactive species; diffusing at least one reactant at a controlled rate from an outer region of the metallic structure towards an inner region of the metallic structure to form a gradient in reactant activity; reacting the reactant with the reactive species to form a plurality of dispersoids; and heat treating the metallic structure to achieve grain growth so as to form a graded microstructure.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: MICHAEL FRANCIS XAVIER GIGLIOTTI, PAZHAYANNUR RAMANATHAN SUBRAMANIAN, SUNDAR AMANCHERLA, KRISHNAMURTHY ANAND, DHEEPA SRINIVASAN, CANAN USLU HARDWICKE
  • Publication number: 20080145649
    Abstract: A coating composition is described, containing (a) a metallic matrix based on nickel, cobalt, iron; or combinations thereof; (b) a ceramic phase, containing at least one metal boride or metal silicide compound; and (c) a lubricant phase. Methods of providing wear-resistance and low-friction characteristics to an article (e.g., a gas turbine) are also described, using the coating composition. Related structures are also discussed.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 19, 2008
    Applicant: GENERAL ELECTRIC
    Inventors: Uma Devi Mannem, Krishnamurthy Anand, Dennis Michael Gray, Farshad Ghasripoor
  • Publication number: 20080101540
    Abstract: A bearing assembly mounted in an x-ray tube includes a bearing race and a bearing ball positioned adjacent to the bearing race. A lubricant is deposited on a first portion of a bare metal of one of the bearing race and the bearing ball, and a metal matrix deposited on a second portion of the bare metal.
    Type: Application
    Filed: October 23, 2006
    Publication date: May 1, 2008
    Inventors: Krishnamurthy Anand, Dennis Michael Gray, Pazhayannur R. Subramanian, Srinidhi Sampath, Carey Shawn Rogers, Steven Alfred Tysoe, Richard Arthur Nardi
  • Publication number: 20080101539
    Abstract: A bearing assembly mounted in an x-ray tube includes a bearing race and a bearing ball positioned adjacent to the bearing race. A coating is deposited on one of the bearing race and the bearing ball includes a lubricant and a hard material having a hardness greater than a base material of the bearing race and a base material of the bearing ball.
    Type: Application
    Filed: October 23, 2006
    Publication date: May 1, 2008
    Inventors: Krishnamurthy Anand, Dennis Michael Gray, Pazhayannur R. Subramanian, Srinidhi Sampath, Carey Shawn Rogers, Steven Alfred Tysoe, Richard Arthur Nardi
  • Patent number: 7300708
    Abstract: An erosion resistant protective structure for a turbine engine component comprises a shape memory alloy. The shape memory alloy includes nickel-titanium based alloys, indium-titanium based alloys, nickel-aluminum based alloys, nickel-gallium based alloys, copper based alloys, gold-cadmium based alloys, iron-platinum based alloys, iron-palladium based alloys, silver-cadmium based alloys, indium-cadmium based alloys, manganese-copper based alloys, ruthenium-niobium based alloys, ruthenium-tantalum based alloys, titanium based alloys, iron-based alloys, or combinations comprising at least one of the foregoing alloys. Also, disclosed herein are methods for forming the shape memory alloy onto turbine component.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: November 27, 2007
    Assignee: General Electric Company
    Inventors: Michael Francis Xavier Gigliotti, Jr., Canan Uslu Hardwicke, Liang Jiang, John William Short, Don Mark Lipkin, Jonathan Paul Blank, Krishnamurthy Anand
  • Publication number: 20070228664
    Abstract: A mechanical seal includes a pair of opposing seal faces, wherein at least one of the pair of seal faces comprises a multilayer coating disposed on a substrate, and wherein the multilayer coating comprises a periodic repetition of distinct layers. In another embodiment, the mechanical seal includes a pair of opposing seal faces, wherein at least one of the pair of seal faces comprises a multilayer coating disposed on a substrate, wherein the multilayer coating comprises a plurality of layers of a composite, and wherein no two adjacent layers of the composite comprise an identical ratio of composite constituents. A method includes disposing a multilayer coating on a substrate to form at least one of a pair of opposing seal faces of a mechanical seal.
    Type: Application
    Filed: March 31, 2006
    Publication date: October 4, 2007
    Inventors: Krishnamurthy Anand, Mohsen Salehi, Bruce Brisson, Farshad Ghasripoor, Paul Mathew, Dennis Gray, Dheepa Srinivasan
  • Publication number: 20070031702
    Abstract: Erosion resistant coating processes and material improvements for line-of-sight applications. The erosion resistant coating composition includes nanostructured grains of tungsten carbide (WC) and/or submicron sized grains of WC embedded into a cobalt chromium (CoCr) binder matrix. A high velocity air fuel thermal spray process (HVAF) is used to create thick coatings in excess of about 500 microns with high percentages of primary carbide for longer life better erosion resistant coatings. These materials and processes are especially suited for hydroelectric turbine components.
    Type: Application
    Filed: October 12, 2006
    Publication date: February 8, 2007
    Inventors: Dennis Gray, Krishnamurthy Anand, Warren Nelson, Hans Aunemo, Alain Demers, Olav Rommetveit
  • Patent number: 7141110
    Abstract: Erosion resistant coating processes and material improvements for line-of-sight applications. The erosion resistant coating composition includes nanostructured grains of tungsten carbide (WC) and/or submicron sized grains of WC embedded into a cobalt chromium (CoCr) binder matrix. A high velocity air fuel thermal spray process (HVAF) is used to create thick coatings in excess of about 500 microns with high percentages of primary carbide for longer life better erosion resistant coatings. These materials and processes are especially suited for hydroelectric turbine components.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: November 28, 2006
    Assignee: General Electric Company
    Inventors: Dennis Michael Gray, Krishnamurthy Anand, Warren Arthur Nelson, Hans Aunemo, Alain Demers, Olav Rommetveit
  • Patent number: 7041148
    Abstract: High-permeability, low-core-loss soft magnetic composite materials, compositions containing the same, and methods for making the same are described. These magnetic materials are made by forming fiber or flake shaped particles from a ferromagnetic material, annealing the particles, and then coating an insulating material on the particles. These particles can then be compacted to form an article that has high permeability, high saturation, low core loss, and is a suitable replacement for laminations in various applications, such as motors.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: May 9, 2006
    Assignee: General Electric Company
    Inventors: Luana Emiliana Iorio, Paul Alfred Siemers, Gerald Burt Kliman, Krishnamurthy Anand, Amitabh Verma
  • Publication number: 20050207896
    Abstract: An erosion resistant protective structure for a turbine engine component comprises a shape memory alloy. The shape memory alloy includes nickel-titanium based alloys, indium-titanium based alloys, nickel-aluminum based alloys, nickel-gallium based alloys, copper based alloys, gold-cadmium based alloys, iron-platinum based alloys, iron-palladium based alloys, silver-cadmium based alloys, indium-cadmium based alloys, manganese-copper based alloys, ruthenium-niobium based alloys, ruthenium-tantalum based alloys, titanium based alloys, iron-based alloys, or combinations comprising at least one of the foregoing alloys. Also, disclosed herein are methods for forming the shape memory alloy onto turbine component.
    Type: Application
    Filed: March 16, 2004
    Publication date: September 22, 2005
    Inventors: Michael Gigliotti, Canan Hardwicke, Liang Jiang, John Short, Don Lipkin, Jonathan Blank, Krishnamurthy Anand
  • Publication number: 20050133121
    Abstract: A nanocomposite comprising a plurality of nanoparticles dispersed in a metallic alloy matrix, and a structural component formed from such a nanocomposite. The metallic matrix comprises at least one of a nickel-based alloy and an iron-based alloy. The nanocomposite contains a higher volume fraction of nanoparticle dispersoids than those presently available. The structural component include those used in hot gas path assemblies, such as steam turbines, gas turbines, and aircraft turbine. A method of making such nanocomposites is also disclosed.
    Type: Application
    Filed: December 22, 2003
    Publication date: June 23, 2005
    Inventors: Pazhayannur Subramanian, Thomas Angeliu, Reed Corderman, Shyh-Chin Huang, Judson Marte, Dennis Gray, Krishnamurthy Anand, Dheepa Srinivasan, Ramkumar Oruganti, Sundar Amancherla
  • Publication number: 20050112399
    Abstract: Erosion resistant coating compositions include hard particles in a metal matrix such as nickel-based, cobalt-based and iron-based matrices applied by a plating process for complex geometry or hard to access component surfaces or by thermal spray processes for line of sight applications. These materials and processes are especially suited for providing erosion resistance to hydroelectric turbine components.
    Type: Application
    Filed: March 31, 2004
    Publication date: May 26, 2005
    Inventors: Dennis Gray, Krishnamurthy Anand, Hans Aunemo, Alain Demers, Timothy Dumm, Kanchan Kumari, Warren Nelson, Olav Rommetveit, Steven Tysoe
  • Publication number: 20050112411
    Abstract: Erosion resistant coating processes and material improvements for line-of-sight applications. The erosion resistant coating composition includes nanostructured grains of tungsten carbide (WC) and/or submicron sized grains of WC embedded into a cobalt chromium (CoCr) binder matrix. A high velocity air fuel thermal spray process (HVAF) is used to create thick coatings in excess of about 500 microns with high percentages of primary carbide for longer life better erosion resistant coatings. These materials and processes are especially suited for hydroelectric turbine components.
    Type: Application
    Filed: December 31, 2003
    Publication date: May 26, 2005
    Inventors: Dennis Gray, Krishnamurthy Anand, Warren Nelson, Hans Aunemo, Alain Demers, Olav Rommetveit
  • Publication number: 20050079370
    Abstract: Nano-multilayered structures, components and associated methods of manufacture suitable for use in high-temperature applications including a plurality of metallic alloy layers, wherein the thickness of each of the plurality of metallic alloy layers is on a nano scale, and a plurality of ceramic oxide layers disposed between the plurality of metallic alloy layers in an alternating manner, wherein the thickness of each of the plurality of ceramic oxide layers is on a nano scale.
    Type: Application
    Filed: October 10, 2003
    Publication date: April 14, 2005
    Inventors: Reed Corderman, Pazhayannur Subramanian, Dheepa Srinivasan, Dennis Gray, Krishnamurthy Anand
  • Publication number: 20050019558
    Abstract: A composition comprises ferromagnetic particles having a magnetite coating. In one embodiment, a method comprises coating ferromagnetic particles with magnetite; and compacting the particles to a desired shape. In yet another embodiment, an article is manufactured from a composition comprising ferromagnetic particles having a magnetite coating. In yet another embodiment, an article is manufactured from a method comprising coating ferromagnetic particles with magnetite; and compacting the particles to a desired shape.
    Type: Application
    Filed: July 24, 2003
    Publication date: January 27, 2005
    Inventors: Amitabh Verma, Luana Iorio, Krishnamurthy Anand, Kanchan Kumari