Patents by Inventor Krzysztof Matyjaszewski

Krzysztof Matyjaszewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050090632
    Abstract: A new polymerization process (atom transfer radical polymerization, or ATRP) based on a redox reaction between a transition metal (e.g., Cu(I)/Cu(II), provides “living” or controlled radical polymerization of styrene, (meth)acrylates, and other radically polymerizable monomers. Using various simple organic halides as model halogen atom transfer precursors (initiators) and transition metal complexes as a model halogen atom transfer promoters (catalysts), a “living” radical polymerization affords (co)polymers having the predetermined number average molecular weight by ?[M]/[I]0 (up to Mn>105) and a surprisingly narrow molecular weight distribution (Mw/Mn), as low as 1.15. The participation of free radical intermediates in ATRP is supported by end-group analysis and stereochemistry of the polymerization. In addition, polymers with various topologies (e.g.
    Type: Application
    Filed: November 18, 2004
    Publication date: April 28, 2005
    Inventors: Krzysztof Matyjaszewski, Jin-Shan Wang
  • Publication number: 20040220362
    Abstract: Disclosed is a process for the removal and recycle of a supported transition metal catalyst complex from a polymerization reaction medium comprising the steps separating the supported transition metal catalyst from the reaction medium and contacting the supported transition metal catalyst with a reducing agent. The reducing agent may be a transition metal and/or a source of radicals. Also disclosed is a process for the recovery of transition metal catalyst from a reaction medium, comprising changing the conditions of a medium comprising transition metal catalyst attached to a solid support, wherein changing the conditions causes desorption of the transition metal catalyst from solid support.
    Type: Application
    Filed: June 3, 2004
    Publication date: November 4, 2004
    Inventors: Krzysztof Matyjaszewski, Sung Chul Hong
  • Publication number: 20040204556
    Abstract: A polymerization process comprising initiating a first polymerization of monomers using an initiator functionalized with an ATRP initiating site, wherein the first polymerization is selected from the group of cationic polymerization, anionic polymerization, conventional free radical polymerization, metathesis, ring opening polymerization, cationic ring opening polymerization, and coordination polymerization to form a macroinitiator comprising an ATRP initiating site and further initiating an ATRP polymerization of radically polymerizable monomers using the macroinitiator comprising an ATRP initiating site. Novel block copolymers may be formed by the disclosed method.
    Type: Application
    Filed: February 18, 2004
    Publication date: October 14, 2004
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Simion Coca
  • Patent number: 6790919
    Abstract: The present invention describes catalysts for atom transfer radical polymerization processes. Specifically, a hybrid catalyst system comprising transition metal complexes held in close conjunction with a solid support and of a soluble ligand, or soluble transition metal complex or desorbed catalyst. The hybrid catalyst system may be used in a controlled polymerization process of radically (co)polymerizable monomers in the presence of a system comprising an initiator comprising one or more radically transferable atom(s) or group(s). The catalyst may include a transition metal, one or more counterions, a ligand attached to a solid support, and a soluble ligand. The hybrid catalyst may also be comprised of an attached transition metal complex, and a soluble transition metal complex.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: September 14, 2004
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Sung Chul Hong
  • Publication number: 20040171779
    Abstract: Further improvements have been made in processes for controlled polymerization of free radically (co)polymerizable monomers mediated by a transition metal complex participating in a redox reaction which involves transfer of a radically transferable atom or group to and from an initiator or dormant polymer and the growing active polymer chain ends. Two improvements involve the choice of counterion in the transition metal complex. In one improvement the transition metal is held in close conjunction with a solid support through interaction with a counterion directly attached to the support. This cognition also allows for improvements in catalyst utilization including catalyst recovery and recycle. In another improvement, particularly suitable for controlled polymerization of certain monomers with an expanded range of transition metals, the function of counterion and ligand in the development of the transition metal based catalyst is superseded by use of salt containing a soluble organic counterion.
    Type: Application
    Filed: February 27, 2004
    Publication date: September 2, 2004
    Applicant: Carnegie Mellon University (a non-profit Pennsylvania organization)
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Hyun-jong Paik, Tomislav Pintauer, Jeff Pyun, Jian Qiu, Mircea Teodorescu, Jianhui Xia, Xuan Zhang, Peter J. Miller
  • Patent number: 6759491
    Abstract: The use of concurrent reverse and normal initiation processes in an ATRP enables the use of highly active catalysts under “reverse ATRP” conditions and leads to the synthesis of well-defined polymers with low molecular weight distributions while employing much lower levels of the transition metal in the system. This dual activation/initiating system allows use of active catalysts that are added to the reaction in an oxidatively stable form. The benefits of this dual initiating system can be attained in bulk, solution and multi-phase ATRP processes, including emulsions, miniemulsions and polymerization from surfaces.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: July 6, 2004
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Jérôme Gromada, Mei Li
  • Publication number: 20040122189
    Abstract: This present invention is directed towards the identification or design, preparation, and use of suitable transition metal complexes for use as catalysts. The transition metal complexes may comprise heterodonor ligands. The present invention is also directed toward a method of determining the suitability of a transition metal complex for use in a catalytic reaction, such as, but not limited to, atom transfer radical polymerization (“ATRP”), atom transfer radical addition (“ATRA”), atom transfer radical cyclization (“ATRC”), and other catalytic redox reactions.
    Type: Application
    Filed: October 10, 2003
    Publication date: June 24, 2004
    Inventors: Krzysztof Matyjaszewski, Nicolay Tsarevsky
  • Publication number: 20040110893
    Abstract: Embodiments of the present invention include a material comprising a polymer having a modulus of elasticity less than 105 Pa and a material comprising a polymer having a modulus of elasticity of less than 5×104 Pa.
    Type: Application
    Filed: August 11, 2003
    Publication date: June 10, 2004
    Inventors: Krzysztof Matyjaszewski, Tadeusz Pakula
  • Publication number: 20040044152
    Abstract: A controlled polymerization process is described in which the polymerization free radically (co)polymerizable ionic monomers is initiated in the presence of a system initially comprising a transition metal complex, and an initiator comprising a radically transferable azide group. The process may include an excess of one or more uncomplexed ligand and at least a portion of the nonionic monomers may be polar monomers. The ionic monomer may be anionic or cationic.
    Type: Application
    Filed: July 23, 2003
    Publication date: March 4, 2004
    Inventors: Krzysztof Matyjaszewski, Nicolay Tsarevsky
  • Publication number: 20030216528
    Abstract: A new polymerization process (atom transfer radical polymerization, or ATRP) based on a redox reaction between a transition metal (e.g., Cu(I)/Cu(II), provides “living” or controlled radical polymerization of styrene, (meth)acrylates, and other radically polymerizable monomers. Using various simple organic halides as model halogen atom transfer precursors (initiators) and transition metal complexes as a model halogen atom transfer promoters (catalysts), a “living” radical polymerization affords (co)polymers having the predetermined number average molecular weight by &Dgr;[M]/[I]0 (up to Mn>105) and a surprisingly narrow molecular weight distribution (Mw/Mn), as low as 1.15. The participation of free radical intermediates in ATRP is supported by end-group analysis and stereochemistry of the polymerization. In addition, polymers with various topologies (e.g.
    Type: Application
    Filed: June 6, 2003
    Publication date: November 20, 2003
    Inventors: Krzysztof Matyjaszewski, Jin-Shan Wang
  • Publication number: 20030185741
    Abstract: The present invention comprises a novel process for the preparation of carbon based structured materials with controlled topology, morphology and functionality. The nanostructured materials are prepared by controlled carbonization, or pyrolysis, of precursors comprising phase separated copolymers. The precursor materials are selected to phase separate and self organize in bulk, in solution, in the presence of phase selective solvents, at surfaces, interfaces or during fabrication, into articles, fibers or films exhibiting well-defined, self-organized morphology or precursors of well-defined, self-organized, bi- or tri-phasic morphology. Compositional control over the (co)polymers provides control over the structure of the phase separated precursor whose organization therein dictates the nanostructure of the material obtained after carbonization or pyrolysis, wherein each dimension of the formed structure can be predetermined.
    Type: Application
    Filed: April 6, 2002
    Publication date: October 2, 2003
    Inventors: Krzysztof Matyjaszewski, Tomasz Kowalewski, David N. Lambeth, James Spanswick, Nicolay V. Tsarevsky
  • Patent number: 6627314
    Abstract: The present invention describes preparation of nanocomposite particles and structures by polymerizing monomers onto a functional inorganic colloid comprising a polymerization initiation site. The polymerization process is preferably a controlled/living polymerization process, including but not limited to, atom transfer radical polymerization and stable free radical polymerization. The nanocomposite particles can self-organize in solution, on surfaces or in films forming nanocomposite structures. Tethered AB block nanocomposite particles bring size control, solubility control and control over micro- and macro-functionality to the particles. The process may be catalyzed by a transition metal complex which participates in a reversible redox cycle with at least one of the group and a compound having a radically transferable atom or group, to form a nanocomposite particle with a tethered polymer chain. The process may be continued to form tethered copolymer chain.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: September 30, 2003
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Jeffrey Pyun
  • Publication number: 20030181619
    Abstract: Improved processes for atom (or group) transfer radical polymerization (ATRP) and novel polymers have been developed and are described. In certain embodiments, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly alternating monomer sequence are described. Novel copolymers comprising a least one polymeric branch or polymeric block with a gradient monomer structure are described. Additionally, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly periodic monomer sequence are also described. Novel copolymers having a water soluble backbone and at least two hydrophobic polymeric branches grafted to the water soluble backbone are also described.
    Type: Application
    Filed: November 7, 2002
    Publication date: September 25, 2003
    Inventors: Krzysztof Matyjaszewski, Simion Coca, Scott G. Gaynor, Dorota Greszta, Timothy E. Patten, Jin-Shan Wang, Jianhui Xia
  • Patent number: 6624262
    Abstract: The present invention describes preparation of nanocomposite particles and structures by polymerizing monomers onto a functional inorganic colloid comprising a polymerization initiation site. The polymerization process is preferably a controlled/living polymerization process, including but not limited to, atom transfer radical polymerization and stable free radical polymerization. The nanocomposite particles can self-organize in solution, on surfaces or in films forming nanocomposite structures. Tethered AB block nanocomposite particles bring size control, solubility control and control over micro- and macro-functionality to the particles. The process may be catalyzed by a transition metal complex which participates in a reversible redox cycle with at least one of the group and a compound having a radically transferable atom or group, to form a nanocomposite particle with a tethered polymer chain. The process may be continued to form tethered copolymer chain.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: September 23, 2003
    Assignee: Carnegie Melon University
    Inventors: Krzysztof Matyjaszewski, Nicolay Tsarevsky
  • Patent number: 6624263
    Abstract: A new polymerization process (atom transfer radical polymerization, or ATRP) based on a redox reaction between a transition metal (e.g., Cu(I)/Cu(II), provides “living” or controlled radical polymerization of styrene, (meth)acrylates, and other radically polymerizable monomers. Using various simple organic halides as model halogen atom transfer precursors (initiators) and transition metal complexes as a model halogen atom transfer promoters (catalysts), a “living” radical polymerization affords (co)polymers having the predetermined number average molecular weight by &Dgr;[M]/[I]0 (up to Mn>105) and a surprisingly narrow molecular weight distribution (Mw/Mn), as low as 1.15. The participation of free radical intermediates in ATRP is supported by end-group analysis and stereochemistry of the polymerization. In addition, polymers with various topologies (e.g.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: September 23, 2003
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Jin-Shan Wang
  • Publication number: 20030139547
    Abstract: The use of concurrent reverse and normal initiation processes in an ATRP enables the use of highly active catalysts under “reverse ATRP” conditions and leads to the synthesis of well-defined polymers with low molecular weight distributions while employing much lower levels of the transition metal in the system. This dual activation/initiating system allows use of active catalysts that are added to the reaction in an oxidatively stable form. The benefits of this dual initiating system can be attained in bulk, solution and multi-phase ATRP processes, including emulsions, miniemulsions and polymerization from surfaces.
    Type: Application
    Filed: October 15, 2002
    Publication date: July 24, 2003
    Inventors: Krzysztof Matyjaszewski, Jerome Michel Gromada, Mei Li
  • Publication number: 20030139553
    Abstract: The present invention relates to a polymerization process for the control of the microstructure of polymers and to novel copolymers. An embodiment of the present invention relates a process of polymerizing first and second monomers in the presence of a complex comprising at least one of the monomers. The presence of the complex modifies the relative reactivity, or cross propagation rate constants, of the monomers in copolymerization reactions. Embodiments of the present invention allow the synthesis of polymers with novel stereochemistry and monomer sequence distribution, for example, but not limited to, copolymers with at least one segment of alternating monomers, a controlled molecular weight and narrow molecular weight distribution, or a segment of high concentration of the first monomer.
    Type: Application
    Filed: October 11, 2002
    Publication date: July 24, 2003
    Inventors: Krzysztof Matyjaszewski, Betul Kirci, Jean Francois Lutz, Tomislav Pintauer
  • Patent number: 6541580
    Abstract: A process for ATRP polymerization and coupling of molecules by radical processes is provided, wherein improvements are provided by selection of various ligands, counterions, transition metal compounds and/or zero oxidation state transition metals to give improved control over molecular weight, molecular weight distribution and compositions of the products formed.
    Type: Grant
    Filed: August 6, 1999
    Date of Patent: April 1, 2003
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Simion Coca
  • Patent number: 6538091
    Abstract: Improved processes have been developed for atom (or group) transfer radical polymerization (ATRP). In one improvement, the ATRP process involves polymerizing in the presence of a (partially) free radical-deactivating amount of the corresponding reduced or oxidized transition metal compound. In a further improvement, the ATRP process involves polymerizing in a homogeneous system or in the presence of a solubilized initiating/catalytic system. The present invention also concerns end-functional, site-specific functional and telechelic homopolymers and copolymers; block, random, graft, alternating and tapered (or “gradient”) copolymers which may have certain properties or a certain novel structure; star, comb and “hyperbranched” polymers and copolymers; multi-functional hyperbranched, end-functional polymers; cross-linked polymers and gels; water-soluble polymers and hydrogels (e.g.
    Type: Grant
    Filed: February 4, 1998
    Date of Patent: March 25, 2003
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Simion Coca
  • Patent number: 6512060
    Abstract: A process for controlled coupling and chain extension, or atom transfer condensation polymerization, of molecules containing one or more radically transferable atoms or groups is provided, wherein transition metal compounds, optionally partially in the zero oxidation state, various ligands, counterions, and solvents are preferentially employed to preferentially give coupled and chain extended products that no longer contain a radically transferable atom or group.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: January 28, 2003
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Simion Coca