Patents by Inventor Krzysztof Matyjaszewski

Krzysztof Matyjaszewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090176951
    Abstract: The invention is directed to a microemulsion polymerization comprising adding a polymerization catalyst precursor, such as a transition metal complex in the higher of two accessible oxidation states, an ATRP initiator, and an organic solvent to an aqueous solution to form an emulsion. Radically polymerizable monomers and a reducing agent may then be added to the emulsion. The reducing agent converts the catalyst precursor to a catalyst for polymerization of the first monomer from the initiator. In certain embodiments the organic solvent may comprise radically polymerizable monomers. The aqueous solution may comprise a surfactant.
    Type: Application
    Filed: August 23, 2006
    Publication date: July 9, 2009
    Inventors: Krzysztof Matyjaszewski, Ke Min
  • Publication number: 20090171024
    Abstract: The present invention is directed towards a polymerization process for the preparation of block copolymers. In an embodiment, the polymerization process may comprise low levels of catalyst in an oxidized state that react with a reducing agent to form an active catalyst. Embodiments of the process surprisingly use low levels of catalysts and allow formation of the all blocks with the same catalyst. The catalyst may be deactivated and reactivated to form each block. In one embodiment of the invention, the catalyst is oxidized to the deactivator state when the desired degree of polymerization of a polymer segment or block is reached. The first monomer may be removed prior to addition of the second monomer. The catalyst may then be reactivated for preparation of a second block.
    Type: Application
    Filed: December 20, 2006
    Publication date: July 2, 2009
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Wojciech Jakubowski, James Spanswick, Laura Mueller, Krzysztof Matyjaszewski
  • Publication number: 20080286319
    Abstract: The present invention relates to biocidal articles. In an embodiment the biocidal article comprises a plurality of polymers having biocidally active groups. The polymers are attached to a surface and may have a polydispersity less than 3. The biocidally active groups may comprise at least one of a quaternary ammonium salt, a quaternary phosphonium salt or a chloroamine. The attached polymers may be any microstructure, topology or composition, such as, a homopolymer, block copolymer, multiblock copolymer, a random copolymer, graft polymer, a branched or a hyperbranched polymer, and a gradient copolymer. The present invention also comprises a process for the preparation of a biocidal article. Embodiments of the process comprise polymerizing radically polymerizable monomers from an initiator attached to a surface, wherein at least a portion of the monomers comprise a group capable of being converted to a biocidally active group, and converting the group to the biocidally active group.
    Type: Application
    Filed: July 7, 2004
    Publication date: November 20, 2008
    Inventors: Alan Russell, Richard Koepsel, Sang Lee, Krzysztof Matyjaszewski
  • Patent number: 7407995
    Abstract: Disclosed is the preparation of organic/inorganic hybrid particles comprising magnesium hydroxide cores and tethered copolymer chains whose composition can be selected to allow dispersion in targeted plastic materials, thereby providing improved mechanical, electrical and flame retardant properties. Processes for preparing the same are also disclosed.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: August 5, 2008
    Assignees: LS Cable Ltd., Carnegie Mellon University
    Inventors: Jeong-Bin Ok, Krzysztof Matyjaszewski
  • Publication number: 20080139689
    Abstract: A polymer formed by controlled radical polymerization includes groups that can be modified after controlled radical polymerization to form a radical. The polymer can be the reaction product of a controlled radical polymerization of radically polymerizable monomers, wherein at least one of the radically polymerizable monomers includes at least one group that can be modified after the controlled radical polymerization to form a radical. A compound includes a first group that is stimulated upon application of energy to the molecule to tether the molecule to a surface or to another polymer chain and a second group comprising a controlled radical polymerization initiator functionality. A block copolymer includes at least a first segment to impart a predetermined functionality to a target surface and at least a second segment including functional groups to interact with the targeted surface to attach the block copolymer to the surface.
    Type: Application
    Filed: August 17, 2007
    Publication date: June 12, 2008
    Inventors: Jinyu Huang, Alan J. Russell, Nicolay V. Tsarevsky, Krzysztof Matyjaszewski
  • Patent number: 7332550
    Abstract: This present invention is directed towards the identification or design, preparation, and use of suitable transition metal complexes for use as catalysts. The transition metal complexes may comprise heterodonor ligands. The present invention is also directed toward a method of determining the suitability of a transition metal complex for use in a catalytic reaction, such as, but not limited to, atom transfer radical polymerization (“ATRP”), atom transfer radical addition (“ATRA”), atom transfer radical cyclization (“ATRC”), and other catalytic redox reactions. The method assists in the approximate determination of the fundamental properties of the transition metal complex in a reaction media, such as, but not limited to, solubility, redox potential, stability towards acidic, basic, or ionic species, conditional radically transferable atom phylicity, and propensity toward disproportionation and therefore, the suitability of the complex to be used as a catalyst in the reaction media.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: February 19, 2008
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Nicolay Tsarevsky
  • Publication number: 20070276101
    Abstract: Embodiments of the polymerization process of the present invention are directed to polymerizing free radically polymerizable monomers in the presence of a polymerization medium initially comprising at least one transition metal catalyst and an atom transfer radical polymerization initiator. The polymerization medium may additionally comprise a reducing agent. The reducing agent may be added initially or during the polymerization process in a continuous or intermittent manner. The polymerization process may further comprise reacting the reducing agent with at least one of the transition metal catalyst in an oxidized state and a compound comprising a radically transferable atom or group to form a compound that does not participate significantly in control of the polymerization process.
    Type: Application
    Filed: March 7, 2005
    Publication date: November 29, 2007
    Applicant: CARNEGIE MELLON UINIVERSITY
    Inventors: Krzysztof Matyjaszewski, Lindsay Bombalski, Wojciech Jakubowski, Ke Min, James Spanswick, Nicolay Tsarevsky
  • Publication number: 20070197693
    Abstract: Disclosed is the preparation of organic/inorganic hybrid particles comprising magnesium hydroxide cores and tethered copolymer chains whose composition can be selected to allow dispersion in targeted plastic materials, thereby providing improved mechanical, electrical and flame retardant properties. Processes for preparing the same are also disclosed.
    Type: Application
    Filed: November 3, 2006
    Publication date: August 23, 2007
    Inventors: Jeong-Bin Ok, Krzysztof Matyjaszewski
  • Publication number: 20070155926
    Abstract: Polymers comprising a polymer backbone comprising one or more degradable units are described. The polymer may additionally comprise two or more polymer segments comprising radically (co)polymerizable vinyl monomer units. The degradable units may be independently selected from, but not limited to, at least one of hydrodegradable, photodegradable and biodegradable units between the polymer segments and dispersed along the polymer backbone. The degradable units may be derived from one or more monomers comprising a heterocyclic ring that is capable of undergoing radical ring opening polymerization, a coupling agent, or from a polymerization initiator, radically polymerizable monomers, as well as other reactive sources. Embodiments of the degradable polymer of claim are capable of degrading by at least one of a hydrodegradation, photodegradation or biodegradation mechanisms to form at least one of telechelic oligomer and telechelic polymeric fragments of the polymer.
    Type: Application
    Filed: March 29, 2004
    Publication date: July 5, 2007
    Inventors: Krzysztof Matyjaszewski, Im Sik Chung, Jinyu Huang, Traian Sarbu, Daniel Siegwart, James Spanswick, Nicolay Tsarevsky
  • Publication number: 20070106012
    Abstract: The present invention provides dispersible carbon particles and a process for the preparation of dispersible carbon particles. In certain embodiments, the process of the present invention comprises polymerizing monomers from a carbon particle, wherein the carbon particle comprises one or more attached groups comprising one or more transferable atoms or groups. At least a portion of the monomers comprise at least one reactive or ionizable functional group capable of conversion into ionic functional groups. Ionic functional groups enhance the dispersity of the carbon particle in the desired medium, such as the dispersity of carbon black particles in water or aqueous solutions. The process of the present invention may further include converting at least a portion of the reactive or ionizable functional groups into ionic functional groups. The ionic groups may be quaternary ammonium groups, carboxylic acid groups, phosphonium groups, sulfonium groups, iodonium groups or salts thereof.
    Type: Application
    Filed: February 10, 2006
    Publication date: May 10, 2007
    Inventors: Krzysztof Matyjaszewski, Tianqi Liu, James Belmont
  • Patent number: 7157530
    Abstract: Disclosed is a process for the removal and recycle of a supported transition metal catalyst complex from a polymerization reaction medium comprising the steps separating the supported transition metal catalyst from the reaction medium and contacting the supported transition metal catalyst with a reducing agent. The reducing agent may be a transition metal and/or a source of radicals. Also disclosed is a process for the recovery of transition metal catalyst from a reaction medium, comprising changing the conditions of a medium comprising transition metal catalyst attached to a solid support, wherein changing the conditions causes desorption of the transition metal catalyst from solid support.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: January 2, 2007
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Sung Chul Hong
  • Publication number: 20060258826
    Abstract: A polymerization process comprising initiating a first polymerization of monomers using an initiator functionalized with an ATRP initiating site, wherein the first polymerization is selected from the group of cationic polymerization, anionic polymerization, conventional free radical polymerization, metathesis, ring opening polymerization, cationic ring opening polymerization, and coordination polymerization to form a macroinitiator comprising an ATRP initiating site and further initiating an ATRP polymerization of radically polymerizable monomers using the macroinitiator comprising an ATRP initiating site. Novel block copolymers may be formed by the disclosed method.
    Type: Application
    Filed: May 8, 2006
    Publication date: November 16, 2006
    Inventors: Krzysztof Matyjaszewski, Scott Gaynor, Simion Coca
  • Patent number: 7125938
    Abstract: A polymerization process comprising initiating a first polymerization of monomers using an initiator functionalized with an ATRP initiating site, wherein the first polymerization is selected from the group of cationic polymerization, anionic polymerization, conventional free radical polymerization, metathesis, ring opening polymerization, cationic ring opening polymerization, and coordination polymerization to form a macroinitiator comprising an ATRP initiating site and further initiating an ATRP polymerization of radically polymerizable monomers using the macroinitiator comprising an ATRP initiating site. Novel block copolymers may be formed by the disclosed method.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: October 24, 2006
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Scott G. Gaynor, Simion Coca
  • Patent number: 7064166
    Abstract: The present invention relates to a polymerization process for the control of the microstructure of polymers and to novel copolymers. An embodiment of the present invention relates a process of polymerizing first and second monomers in the presence of a complex comprising at least one of the monomers. The presence of the complex modifies the relative reactivity, or cross propagation rate constants, of the monomers in copolymerization reactions. Embodiments of the present invention allow the synthesis of polymers with novel stereochemistry and monomer sequence distribution, for example, but not limited to, copolymers with at least one segment of alternating monomers, a controlled molecular weight and narrow molecular weight distribution, or a segment of high concentration of the first monomer.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: June 20, 2006
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Betül Kirci, Jean François Lutz, Tomislav Pintauer
  • Patent number: 7056455
    Abstract: The present invention comprises a novel process for the preparation of carbon based structured materials with controlled topology, morphology and functionality. The nanostructured materials are prepared by controlled carbonization, or pyrolysis, of precursors comprising phase separated copolymers. The precursor materials are selected to phase separate and self organize in bulk, in solution, in the presence of phase selective solvents, at surfaces, interfaces or during fabrication, into articles, fibers or films exhibiting well-defined, self-organized morphology or precursors of well-defined, self-organized, bi- or tri-phasic morphology. Compositional control over the (co)polymers provides control over the structure of the phase separated precursor whose organization therein dictates the nanostructure of the material obtained after carbonization or pyrolysis, wherein each dimension of the formed structure can be predetermined.
    Type: Grant
    Filed: April 6, 2002
    Date of Patent: June 6, 2006
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Tomasz Kowalewski, David N. Lambeth, James Spanswick, Nicolay V. Tsarevsky
  • Patent number: 7049373
    Abstract: A polymerization process is provided for the preparation of graft (co)polymers. An embodiment of the polymerization process of the present invention comprises copolymerizing macromonomers with (co)monomers utilizing a macroinitiator to form a graft (co)polymer. A further embodiment of a polymerization process of the present invention comprises (co)polymerizing macromonomers and monomers with a graft copolymer macroinitiator to form a block-graft (co)polymer. Another embodiment of the process of the present invention comprises (co)polymerizing macromonomers and monomers with a compatible macroinitiator. The chemical and structural properties of the product graft (co)polymer may be controlled by use of a compatible macroinitiator and the functional group on the macromonomer which effect the relative rates of incorporation of the macromonomer and the monomer. Graft (co)polymers may be prepared with homogeneous or heterogeneous distribution of grafts.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: May 23, 2006
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Jean-Francois Lutz, Hosei Shinoda
  • Patent number: 7019082
    Abstract: Embodiments of the present invention include a material comprising a polymer having a modulus of elasticity less than 105 Pa and a material comprising a polymer having a modulus of elasticity of less than 5×104 Pa. Embodiments also include a material comprising a polymeric network and a multiplicity of side chains attached to the polymeric network. The multiplicity of side chains may have an average molecular weight below the critical molecular weight for entanglements. In certain embodiments it may be advantageous for the side branches to have a glass transition temperature below the use temperature of the material. The polymer network may comprise at least two monomers so that the polymer network is a copolymer. Embodiments of the present invention also include methods of forming a polymer network. Such as, for example, a method of preparing a polymer network comprising cross-linking a polymer, wherein the polymer comprises a multiplicity of side chains.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: March 28, 2006
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Tadeusz Pakula
  • Publication number: 20060008490
    Abstract: The present invention relates to biocidal articles. In an embodiment the biocidal article comprises a plurality of polymers having biocidally active groups. The polymers are attached to a surface and may have a polydispersity less than 3. The biocidally active groups may comprise at least one of a quaternary ammonium salt, a quaternary phosphonium salt or a chloroamine. The attached polymers may be any microstructure, topology or composition, such as, a homopolymer, block copolymer, multiblock copolymer, a random copolymer, graft polymer, a branched or a hyperbranched polymer, and a gradient copolymer. The present invention also comprises a process for the preparation of a biocidal article. Embodiments of the process comprise polymerizing radically polymerizable monomers from an initiator attached to a surface, wherein at least a portion of the monomers comprise a group capable of being converted to a biocidally active group, and converting the group to the biocidally active group.
    Type: Application
    Filed: July 7, 2004
    Publication date: January 12, 2006
    Inventors: Alan Russell, Richard Koepsel, Sang Lee, Krzysztof Matyjaszewski
  • Publication number: 20050143546
    Abstract: Improved processes for atom (or group) transfer radical polymerization (ATRP) and novel polymers have been developed and are described. In certain embodiments, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly alternating monomer sequence are described. Novel copolymers comprising a least one polymeric branch or polymeric block with a gradient monomer structure are described. Additionally, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly periodic monomer sequence are also described. Novel copolymers having a water soluble backbone and at least two hydrophobic polymeric branches grafted to the water soluble backbone are also described.
    Type: Application
    Filed: February 16, 2005
    Publication date: June 30, 2005
    Inventors: Krzysztof Matyjaszewski, Simion Coca, Scott Gaynor, Dorota Greszta, Timothy Patten, Jin-Shan Wang, Jianhui Xia
  • Patent number: 6887962
    Abstract: Improved processes for atom (or group) transfer radical polymerization (ATRP) and novel polymers have been developed and are described. In certain embodiments, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly alternating monomer sequence are described. Novel copolymers comprising a least one polymeric branch or polymeric block with a gradient monomer structure are described. Additionally, novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly periodic monomer sequence are also described. Novel copolymers having a water soluble backbone and at least two hydrophobic polymeric branches grafted to the water soluble backbone are also described.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: May 3, 2005
    Assignee: Carnegie Mellon University
    Inventors: Krzysztof Matyjaszewski, Simion Coca, Scott G. Gaynor, Dorota Greszta, Timothy E. Patten, Jin-Shan Wang, Jianhui Xia