Patents by Inventor Krzysztof Z. Siejko

Krzysztof Z. Siejko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11318313
    Abstract: This document discusses, among other things, systems and methods to determine a response between received cardiac electrical information from a subject, such as a time of a P wave, and received cardiac acceleration information of the subject, such as a time of a first heart sound (S1) or a second heart sound (S2), across a set of stimulation signals provided to the subject at different AVD intervals, and determining one or more cardiac resynchronization therapy (CRT) parameters using an inflection point of the determined response.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: May 3, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, Krzysztof Z. Siejko, Qi An
  • Patent number: 11311731
    Abstract: This document discusses, among other things, systems and methods to determine a response curve between received cardiac electrical information from a subject, such as a time of a P wave, and received cardiac acceleration information of the subject, such as a time of a first heart sound (S1) or a second heart sound (S2), to a set of stimulation signals provided to the subject at different AVD intervals. In certain examples, one or more cardiac resynchronization therapy (CRT) parameters can be determined for the subject using the determined response curve.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: April 26, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, Krzysztof Z. Siejko, Qi An
  • Patent number: 11305125
    Abstract: An implantable medical device (IMD) that includes a housing, a first electrode secured relative to the housing, a second electrode secured relative to the housing, and a gyroscope secured relative to the housing. The IMD may include circuitry in the housing in communication with the first electrode, the second electrode, and the gyroscope. The circuitry may be configured to determine and store a plurality of torsion data measurements, from which a representation of a twist profile may be determined.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: April 19, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Bin Mi, Pramodsingh Hirasingh Thakur, Jeffrey E. Stahmann, Keith R. Maile, Qi An, Brendan Early Koop, Yinghong Yu, Viktoria A. Averina, Michael J. Kane, Krzysztof Z. Siejko
  • Patent number: 11285327
    Abstract: This document discusses, among other things, systems and methods to receive physiologic information from a patient during different first and second pacing periods having respective, different first and second atrioventricular (AV) delays, determine first and second physiologic parameters using respective received physiologic information from the first and second pacing periods, and adjust the first AV delay using the determined first and second physiologic parameters, wherein the second AV delay is longer than the first AV delay.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: March 29, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Stephen J. Hahn, Pramodsingh Hirasingh Thakur, Qi An, Viktoria A. Averina, Krzysztof Z. Siejko, Ramesh Wariar
  • Patent number: 11278232
    Abstract: New and alternative approaches to the monitoring of cardiac signal quality for external and/or implantable cardiac devices. In one example, signal quality is monitored continuously or in response to a triggering event or condition and, upon identification of a reduction in signal quality, a device may reconfigure its sensing state. In another example, one or more trends of signal quality are monitored by a device, either continuously or in response to a triggering event or condition, and sensing reconfiguration may be performed in response to identified trends and events. In yet another example, a device may use a looping data capture mode to track sensing data in multiple vectors while primarily relying on less than all sensing vectors to make decisions and, in response to a triggering event or condition, the looped data can be analyzed automatically, without waiting for additional data capture to reconfigure sensing upon identification of the triggering event or condition.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: March 22, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Amy Jean Brisben, Venugopal Allavatam, Krzysztof Z. Siejko, Deepa Mahajan, Kevin G. Wika, Keith L. Herrmann, Stephen J. Hahn
  • Patent number: 11260216
    Abstract: A ventricularly implantable medical device that includes a sensing module that is configured to detect an artifact during ventricular filling and to identify an atrial event based at least on part on the detected artifact. Control circuitry of the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart, wherein the ventricular pacing therapy is time dependent, at least in part, on the identified atrial event.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: March 1, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Krzysztof Z. Siejko, Allan Charles Shuros, William J. Linder, Benjamin J. Haasl, Michael J. Kane, Brendan Early Koop
  • Patent number: 11213242
    Abstract: Systems and methods for detecting atrial tachyarrhythmia are discussed. An exemplary atrial tachyarrhythmia detection system includes an arrhythmia detector circuit configured to receive physiologic information of a patient, generate a morphological similarity metric between the received physiologic information and a sinus rhythm (SR) template representing a morphology of conducted sinus beats during normal SR, and generate a morphological variability metric indicative of a variability in morphology between heart beats in the received physiologic information. The arrhythmia detector circuit may detect an atrial tachyarrhythmia episode the morphological similarity and morphological variability metrics.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: January 4, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Krzysztof Z. Siejko, David L. Perschbacher, Sunipa Saha
  • Patent number: 11207527
    Abstract: Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system is disclosed. An electrical cardiac signal associated with an atrial contraction of the patient's heart and a mechanical response to the atrial contraction of a patient's heart are used to determine an atrial contraction timing fiducial. A ventricle pacing pulse may then be generated an A-V delay after the atrial contraction timing fiducial.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: December 28, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Yinghong Yu, Pramodsingh Hirasingh Thakur, Krzysztof Z. Siejko
  • Patent number: 11198010
    Abstract: This document discusses, among other things, systems and methods to generate a first pacing waveform during a first pacing period and a second pacing waveform during a second pacing period, and alternate the first and second pacing periods to provide pacing-based hypertension therapy to a heart of a patient to reduce patient blood pressure, wherein the first pacing waveform has a first atrioventricular (AV) delay and the second pacing waveform has a second AV delay longer than the first AV delay. Physiologic information can be received from the patient, and one of the first or second pacing period for delivery to the patient can be determined using the received physiologic information.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: December 14, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Stephen J. Hahn, Pramodsingh Hirasingh Thakur, Qi An, Viktoria A. Averina, Krzysztof Z. Siejko, Ramesh Wariar
  • Patent number: 11141594
    Abstract: This document discusses, among other things, systems and methods to generate a first pacing waveform during a first pacing period and a second pacing waveform during a second pacing period, to alternate first and second pacing periods to provide pacing-based hypertension therapy to a heart of a patient to reduce patient blood pressure, and to determine an increased pacing rate for the first pacing waveform during the first pacing period using the first AV delay, wherein the first pacing waveform has a first atrioventricular (AV) delay and the second pacing waveform has a second AV delay longer than the first AV delay.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: October 12, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Stephen J. Hahn, Pramodsingh Hirasingh Thakur, Qi An, Viktoria A. Averina, Krzysztof Z. Siejko, Ramesh Wariar
  • Patent number: 11135433
    Abstract: Approaches to rank potential left ventricular (LV) pacing vectors are described. Early elimination tests are performed to determine the viability of LV cathode electrodes. Some LV cathodes are eliminated from further testing based on the early elimination tests. LV cathodes identified as viable cathodes are tested further. Viable LV cathode electrodes are tested for hemodynamic efficacy. Cardiac capture and phrenic nerve activation thresholds are then measured for potential LV pacing vectors comprising a viable LV cathode electrode and an anode electrode. The potential LV pacing vectors are ranked based on one or more of the hemodynamic efficacy of the LV cathodes, the cardiac capture thresholds, and the phrenic nerve activation thresholds.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: October 5, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Krzysztof Z. Siejko, Shibaji Shome, Jiang Ding
  • Patent number: 11089958
    Abstract: Systems and methods for managing machine-generated medical events detected from one or more patients are described herein. A medical event management system includes an event analyzer circuit to detect a medical event using physiological data from a patient-triggered episode acquired from a medical device. The event analyzer circuit determines a confidence score of the medical event detection, and generates an alignment indicator indicating a degree of concordance between the detected medical event and the information about the patient-triggered episode. The system assigns priority information to the patient-triggered episode using the generated alignment indicator and the confidence score of the detection. An output circuit can output the received physiological information to a user or a process according to the assigned priority information.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: August 17, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Amy Jean Brisben, Qi An, Pramodsingh Hirasingh Thakur, David J. Ternes, JoAnna Trapp Simpson, Viktoria A. Averina, Deepa Mahajan, Sunipa Saha, Krzysztof Z. Siejko
  • Patent number: 11071870
    Abstract: A ventricularly implantable medical device that includes a sensing module that is configured to gather information during a cardiac cycle and to identify a cardiac interval based at least on part on the gathered information. Control circuitry in the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart, wherein the ventricular pacing therapy is time dependent, at least in part, on the identified cardiac interval.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: July 27, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Krzysztof Z. Siejko, Allan Charles Shuros
  • Patent number: 11052258
    Abstract: A ventricularly implantable medical device that includes a sensing module that is configured to identify a search window of time within a cardiac cycle to search for an atrial artifact. Control circuitry in the ventricular implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart, wherein the ventricular pacing therapy is time dependent, at least in part, on an atrial event identified in the search window of time.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: July 6, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Keith R. Maile, Jeffrey E. Stahmann, Michael J. Kane, Benjamin J. Haasl, Krzysztof Z. Siejko, Allan Charles Shuros, William J. Linder, Brendan Early Koop
  • Publication number: 20210113135
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Application
    Filed: December 9, 2020
    Publication date: April 22, 2021
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: VENUGOPAL ALLAVATAM, STEPHEN J. HAHN, KEITH L. HERRMANN, MITCHELL D. LANZ, KRZYSZTOF Z. SIEJKO, BENJAMIN SPEAKMAN
  • Patent number: 10893813
    Abstract: Various system embodiments comprise a stimulator adapted to deliver a stimulation signal for a heart failure therapy, a number of sensors adapted to provide at least a first measurement of a heart failure status and a second measurement of the heart failure status, and a controller. The controller is connected to the stimulator and to the number of sensors. The controller is adapted to use the first and second measurements to create a heart failure status index, and control the stimulator to modulate the signal using the index. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: January 19, 2021
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Imad Libbus, Krzysztof Z. Siejko, Marina V. Brockway, Robert J. Sweeney
  • Patent number: 10888238
    Abstract: Methods and/or device facilitating and selecting among multiple modes of filtering a cardiac electrical signal, in which one filtering mode includes additional high pass filtering of low frequency signals, relative to the other filtering mode. The selection filtering modes may include comparing sensed signal amplitude to one or more thresholds, using the multiple modes of filtering. In another example, an additional high pass filter is enabled, over and above a default or baseline filtering mode, and the detected cardiac signal is monitored for indications of possible undersensing, and/or for drops in amplitude toward a threshold, and the additional high pass filter may be disabled upon finding of possible undersensing or drop in signal amplitude.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: January 12, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Venugopal Allavatam, Stephen J. Hahn, Keith L. Herrmann, Mitchell D. Lanz, Krzysztof Z. Siejko, Benjamin Speakman
  • Publication number: 20200375490
    Abstract: Systems and methods for classifying a cardiac arrhythmia are discussed. An exemplary system includes a correlator circuit to generate autocorrelation sequences using information of cardiac activity of a subject, including signal segments taken from a cardiac signal at respective elapsed time with respect to reference time. The correlator circuit can generate a correlation image using the autocorrelation sequences. The correlation image may be constructed by stacking the autocorrelation sequences according to the elapsed time of signal segments. An arrhythmia classifier circuit can classify the cardiac activity of the subject as one of arrhythmia types using the correlation image.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 3, 2020
    Inventors: Keith L. Herrmann, Krzysztof Z. Siejko, Deepa Mahajan, Gezheng Wen
  • Patent number: 10849524
    Abstract: Methods and devices adapted for cardiac signal analysis. A method or device has accessible to it more than one approach to cardiac cycle rate analysis and is adapted to monitor sensing signal quality. In response to an apparent reduction in signal quality or other trigger, the method or device checks whether an arrhythmia or an actual drop in signal quality is occurring prior to modifying sensing configurations or parameters.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: December 1, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Amy Jean Brisben, Krzysztof Z. Siejko, Thomas V. Karathanos
  • Publication number: 20200360699
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker (LCP) and an extracardiac device (ED). The LCP is configured to deliver pacing therapy at a pacing interval. Illustratively, the ED may be configured to analyze the cardiac cycle including a portion preceding the pacing therapy delivery for one or several cardiac cycles, and determine whether an interval from the P-wave to the pace therapy in the cardiac cycle(s) is in a desired range. In an example, if the P-wave to pace interval is outside the desired range, the ED communicates to the LCP to adjust the pacing interval.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 19, 2020
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: STEPHEN J. HAHN, KRZYSZTOF Z. SIEJKO, AMY JEAN BRISBEN, KEITH R. MAILE